matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenUmkehrfunktion log mit Wurzel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Exp- und Log-Funktionen" - Umkehrfunktion log mit Wurzel
Umkehrfunktion log mit Wurzel < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion log mit Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:54 Mo 15.04.2013
Autor: MrItalian

Aufgabe
Berechnen Sie die Umkehrfunktion von folgender Funktion: y = ln(x)/sqrt(x).

Hallo zusammen,

mein Ansatz bei dieser Aufgabe sieht wie folgt aus:

y = ln(x)/sqrt(x)
y = ln(x)/e^(sqrt(x))
y = x/e^sqrt(x)
y*e^sqrt(x) = x

Und wie geht es jetzt weiter? Bzw. hab ich bereits einen Fehler gemacht? Wenn ja könnt Ihr mir bitte sagen wo er liegt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Umkehrfunktion log mit Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 00:37 Di 16.04.2013
Autor: reverend

Hallo MrItalian,

nice try.
Was dürft und könnt Ihr denn anwenden?

> Berechnen Sie die Umkehrfunktion von folgender Funktion: y
> = ln(x)/sqrt(x).

>

> mein Ansatz bei dieser Aufgabe sieht wie folgt aus:

>

> y = ln(x)/sqrt(x)
> y = ln(x)/e^(sqrt(x))

Wie das? Das ist keine erlaubte Umformung.

> y = x/e^sqrt(x)

Das auch nicht.

> y*e^sqrt(x) = x

>

> Und wie geht es jetzt weiter? Bzw. hab ich bereits einen
> Fehler gemacht? Wenn ja könnt Ihr mir bitte sagen wo er
> liegt?

Habe ich markiert.
Diese Umkehrfunktion ist mit elementaren Mitteln nicht zu bilden. Sollt Ihr das wirklich? Man wird mindestens die []Lambertsche W-Funktion brauchen.

Gehe ich recht in der Annahme, dass Ihr nur zeigen sollt, dass die Umkehrfunktion (fast) überall existiert?

Grüße
reverend

Bezug
                
Bezug
Umkehrfunktion log mit Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:07 Di 16.04.2013
Autor: MrItalian

Die wahre Aufgabenstellung lautet, dass ich den Rotationskörper um die y-Achse berechnen soll und dafür brauche ich die Umkehrfunktion, oder nicht?

Bezug
                        
Bezug
Umkehrfunktion log mit Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 01:21 Di 16.04.2013
Autor: reverend

Hallo nochmal,

> Die wahre Aufgabenstellung lautet, dass ich den
> Rotationskörper um die y-Achse berechnen soll

Aha! Das ist doch gleich etwas anderes.

> und dafür
> brauche ich die Umkehrfunktion, oder nicht?

Nein, nicht unbedingt. Schau mal []hier.

Grüße
reverend

Bezug
                                
Bezug
Umkehrfunktion log mit Wurzel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:47 Di 16.04.2013
Autor: MrItalian


> Hallo nochmal,
>  
> > Die wahre Aufgabenstellung lautet, dass ich den
>  > Rotationskörper um die y-Achse berechnen soll

>  
> Aha! Das ist doch gleich etwas anderes.
>  
> > und dafür
>  > brauche ich die Umkehrfunktion, oder nicht?

>  
> Nein, nicht unbedingt. Schau mal
> []hier.
>  
> Grüße
>  reverend

Wenn ich Wikipedia richtig verstehe, kann ich das Integral also auch durch die Formel [mm] 2\pi\*\integral_{a}^{b}{x^2\*|f'(x)| dx} [/mm] berechnen?



Bezug
                                        
Bezug
Umkehrfunktion log mit Wurzel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:15 Di 16.04.2013
Autor: reverend

Hallo nochmal,

> > > brauche ich die Umkehrfunktion, oder nicht?
> >
> > Nein, nicht unbedingt. Schau mal
> >
> []hier.

>

> Wenn ich Wikipedia richtig verstehe, kann ich das Integral
> also auch durch die Formel
> [mm]2\pi\*\integral_{a}^{b}{x^2\*|f'(x)| dx}[/mm] berechnen?

Das verstehst Du vollkommen richtig.
Achte aber darauf, wie man die Grenzen des Integrals bestimmt.

Grüße
reverend

Bezug
        
Bezug
Umkehrfunktion log mit Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 07:10 Di 16.04.2013
Autor: fred97

Ergänzend:


f ist definiert auf (0, [mm] \infty), [/mm] weiter ist f(x) [mm] \le f(e^2)=2/e [/mm]  für alle x>0.

f ist auf [mm] (0,e^2) [/mm] streng wachsend und auf [mm] (e^2, \infty) [/mm] streng fallend

Auf (0, [mm] \infty) [/mm] ist f jedenfalls nicht umkehrbar.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]