matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUmkehrfunktion bilden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - Umkehrfunktion bilden
Umkehrfunktion bilden < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion bilden: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:26 Mo 08.12.2014
Autor: dodo1924

Aufgabe
Untersuchen Sie die Funktion f: [mm] (0,+\infty) [/mm] --> [mm] \IR, [/mm] f(x) = [mm] \bruch{x^2-3}{x} [/mm] auf Injektivität und Surjektivität. Bestimmen Sie die Umkehrfunktion von f und stellen Sie f und f^-1 graphisch dar.

Hi!

Bei der Aufgabe habe ich Injektivität bereits gezeigt.
Jetzt stecke ich bei der Surjektivität fest...

Es muss ja gelten, dass für alle [mm] y\in\IR [/mm] ein [mm] x\in(0,+\infty) [/mm] existiert mit f(x) = y

also forme ich um:
y = [mm] \bruch{x^2-3}{x} \gdw yx=x^2-3 \gdw yx+3=x^2 \gdw... [/mm]

Hier grübel ich schon seit einer stunde rum, wie ich weiter umformen sollte, komm aber nicht drauf :P

Schlussendlich muss ja ein term der form x=... rauskommen, wobei ich von diesem term dann ja auch gleich die inverse funktion herauslesen kann, nicht?
Könnt ihr mir hier weiterhelfen?

        
Bezug
Umkehrfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 Mo 08.12.2014
Autor: hanspeter.schmid


> [mm]yx=x^2-3 \gdw yx+3=x^2 \gdw...[/mm]
>  
> Hier grübel ich schon seit einer stunde rum, wie ich
> weiter umformen sollte, komm aber nicht drauf :P

Und jetzt alles auf eine Seite:

[mm] $x^2 [/mm] - yx - 3 = 0$

Das wär dann eine quadratische Gleichung in $x$; die kannst Du lösen, oder?

Gruss,
Hanspeter

Bezug
                
Bezug
Umkehrfunktion bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Mo 08.12.2014
Autor: dodo1924

Super, danke!
Eigentlich einfach! Oft sieht man den wald vor lauter bäumen nicht :P

Jetzt komme ich auf

[mm] x_{1,2}=\bruch{1}{2}*(y+-\wurzel{y^2+12} [/mm]

Da ich die inverse Funktion suche, und eine Funktion ja immer rechtseindeutig sein muss, kann das ja nicht die inverse Funktion sein, oder?
Was muss ich hier noch beachten?

Bezug
                        
Bezug
Umkehrfunktion bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 13:41 Mo 08.12.2014
Autor: fred97


> Super, danke!
>  Eigentlich einfach! Oft sieht man den wald vor lauter
> bäumen nicht :P
>  
> Jetzt komme ich auf
>
> [mm]x_{1,2}=\bruch{1}{2}*(y+-\wurzel{y^2+12}[/mm]

Stimmt.

In der Aufgabenstellung steht:   f: $ [mm] (0,+\infty) [/mm] $ --> $ [mm] \IR, [/mm] $ f(x) = $ [mm] \bruch{x^2-3}{x} [/mm] $.

Somit ist x>0

Für was entscheidest Du Dich also:

für  [mm]x=\bruch{1}{2}*(y+\wurzel{y^2+12})[/mm]

oder


für [mm]x=\bruch{1}{2}*(y-\wurzel{y^2+12})[/mm] ?

FRED

>  
> Da ich die inverse Funktion suche, und eine Funktion ja
> immer rechtseindeutig sein muss, kann das ja nicht die
> inverse Funktion sein, oder?
>  Was muss ich hier noch beachten?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]