matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenUmkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Umkehrfunktion
Umkehrfunktion < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Mo 09.09.2013
Autor: Paddi15

Aufgabe
[mm](f'(0,1,0))^-^1 = \pmat{ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0}^-^1 = \pmat{ 1 & 0 & 0 \\ 0& 0 & 1 \\ -1 & 1 & 0}[/mm]

(Es soll ein hoch -1 sein)


Ich weiß, dass man diese Matrix mit dem Gaussalgorithmus invertiert, aber kann mir das jemand in eigenen Worten erklären?

Dann meine zweite Frage:

f ist nicht injektiv, denn f(0,1,0) = (1,1,1) = f(0,-1,0)

Wie kommt man denn auf die -1?

Vielen Dank im Voraus.

        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Mo 09.09.2013
Autor: leduart

Hallo
irgendwas ist falsch!
du schreibst f(0,1,0) also  wird offensichtlich ein Vektor abgebildet.
dahinter steht einfach eine Matrix? soll die erste f sein?
dann meinst du , du suchst  [mm] \pmat{ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0}^{-1}*\vektor{0\\ 1\\0} [/mm] ?
wenn du nur das Urbild von  [mm] \vektor{0\\ 1\\0} [/mm]
dann suchst du doch
[mm] f(\vektor{x\\ y\\z}=\vektor{0\\ 1\\0} [/mm]
also  
[mm] \pmat{ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0}* \vektor{x\\ y\\z} =\vektor{0\\ 1\\0} [/mm]
ein einfaches GS
sonst musst du die Frage genauer stellen.
wenn du [mm] f^{-1} [/mm] suchst  dann schreibst du, wenn f durch A bewirkt wird einfach
[mm] A*A^{-1}=Id [/mm] die Einheitsmatrix, also drei GS, die du aber alle mit verschiedener rechter Seite auf einmal lösen kannst.
Gruss leduart

Bezug
        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Mo 09.09.2013
Autor: fred97


> [mm](f'(0,1,0))^-^1 = \pmat{ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0}^-^1 = \pmat{ 1 & 0 & 0 \\ 0& 0 & 1 \\ -1 & 1 & 0}[/mm]
>  
> (Es soll ein hoch -1 sein)
>  
> Ich weiß, dass man diese Matrix mit dem Gaussalgorithmus
> invertiert, aber kann mir das jemand in eigenen Worten
> erklären?
>  
> Dann meine zweite Frage:
>  
> f ist nicht injektiv, denn f(0,1,0) = (1,1,1) = f(0,-1,0)
>  
> Wie kommt man denn auf die -1?
>  
> Vielen Dank im Voraus.


Du hast also eine differenzierbare Funktion f: [mm] \IR^3 \to \IR^3. [/mm]

Dann ist f'(0,1,0) eine 3x3 - Matrix.

Offenbar ist f'(0,1,0) invertierbar.

Es wurde also f'(0,1,0) invertiert. Mehr ist nicht passiert !

f muss nicht injektiv sein.

FRED




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]