matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUmkehrfunktion?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Umkehrfunktion?
Umkehrfunktion? < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion?: Erklärung
Status: (Frage) beantwortet Status 
Datum: 10:33 Mo 07.02.2011
Autor: SolRakt

Hallo.

Ich habe eine Frage zu folgendem:

Sei [mm] f(x):=x^{3} [/mm] - 3x +3

Fürs Intervall (-1,1): [mm] f'(x)=3x^{2}-3 [/mm] < 0

Jetzt soll aus vorherigem folgen, dass eine Umkehrfunktion existiert. Aber warum eigentlich? Danke.

        
Bezug
Umkehrfunktion?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Mo 07.02.2011
Autor: fred97


> Hallo.
>  
> Ich habe eine Frage zu folgendem:
>  
> Sei [mm]f(x):=x^{3}[/mm] - 3x +3
>  
> Fürs Intervall (-1,1): [mm]f'(x)=3x^{2}-3[/mm] < 0
>  
> Jetzt soll aus vorherigem folgen, dass eine Umkehrfunktion
> existiert. Aber warum eigentlich?


f ist auf (-1,1) streng fallend, also injektiv.

FRED


Danke.


Bezug
                
Bezug
Umkehrfunktion?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:42 Mo 07.02.2011
Autor: SolRakt

Hmm..ok. Aber muss die Funktion nicht bijektiv sein, damit eine Umkehrfunktion existiert. Oder reicht Injektivität immer aus?

Bezug
                        
Bezug
Umkehrfunktion?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 Mo 07.02.2011
Autor: fred97

Allgemein: ist f:A [mm] \to [/mm] B injektiv, so ex. die Umkeherfunktion

                [mm] f^{-1}:f(A) \to [/mm] A

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]