matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesUmkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis-Sonstiges" - Umkehrfunktion
Umkehrfunktion < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Mi 07.01.2009
Autor: kilchi

Aufgabe
Sei f die quadratische Funktion gegeben durch f(x) = 1/3 (x - [mm] 2)^2 [/mm] +1.
Bestimmen Sie zwei grösstmögliche Teilmengen von [mm] \IR, [/mm] auf denen f umkehrbar ist. Bestimmen sie die zugehörigen Umkehrfunktionen.

Hallo zusammen

Ich kann bei dieser Aufgabe die Umkehrfunktion nicht bestimmen. Wer kann mir damit helfen.
Ich nehme an, dass die Teilmengen ] [mm] -\infty [/mm] , 2] und [2, [mm] \infty[ [/mm] ist.

Aber wie komme ich da auf die Umkehrfunktion? Für eure Antworten bin ich wie immer sehr dankbar.

        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mi 07.01.2009
Autor: kuemmelsche

Hallo kilchi,

Die Funktion ist genau dann umkehrbar, wenn sie bijektiv (sürjektiv+injektiv) ist.

Damit die Funktion injektiv ist, müssen die x-Werte größer/gleich dem x-Wert des Extrempunktes sein! (weil der Graph der Funktion eine Parabel ist)

Die Umkerfunktion lässt sich bestimmen, indem du erst nach x umstellst, und dann y mit x ersetzt, und x mit [mm] \overline{f}(x) [/mm] als Zeichen für die Umkehrfunktion.

d.h. [mm] f(x)=\bruch{1}{3}*(x-2)^{2}+1 \gdw 3*(f(x)-1)=(x-2)^{2} \gdw [/mm] ...

lg Kai

Bezug
                
Bezug
Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Mi 07.01.2009
Autor: kilchi

also dann müsste mein Lösungsweg der folgende sein:

3 (f(x) - 1) = (x - [mm] 2)^2 [/mm]

[mm] \wurzel{3 (f(x) - 1)} [/mm] = x - 2

[mm] \wurzel{3 (f(x) - 1)} [/mm] + 2 = x und jetzt noch umstellen

[mm] \wurzel{3 (x - 1)} [/mm] + 2 = f-1(x)

Ist das richtig?
Danke dir jetzt schon!

Bezug
                        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Mi 07.01.2009
Autor: kuemmelsche

Als Probe können wir ja mal [mm] f(f^{-1}(x)) [/mm] ausrechnen, das müsste ja wieder x sein, denn [mm] f^{-1} \circ \\f=f\ \circ f^{-1}=Id_x [/mm]

[mm] f(f^{-1}(x))=f(\wurzel{3 (x - 1)}+2)=\bruch{1}{3}*((\wurzel{3 (x - 1)}+2)-2)^{2}+1=\bruch{1}{3}*3(x-1)+1=x-1+1=x [/mm]

Es scheint also die Umkehrfunktion zu sein.

lg Kai

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]