matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationUmkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differentiation" - Umkehrfunktion
Umkehrfunktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Fr 05.01.2007
Autor: Schobbi

Aufgabe
Es sei f:D [mm] \to [/mm] W eine bijektive Funktion, die in a [mm] \in [/mm] D diff'bar sei, wobei f'(a) [mm] \not= [/mm] 0 sei. Die Umkehrfunktion [mm] f^{-1} [/mm] (Existenz?): W [mm] \to [/mm] D sei b:=f(a) stetig. Zeigen Sie, dass dann [mm] f^{-1} [/mm] in b diff'bar ist und das [mm] f^{-1}'(b)=\bruch{1}{f'(a)} [/mm] gilt.  

... So weit die Aufgabenstellung! Jedoch weiß ich nicht so recht wie ich anfangen soll und ich dachte vielleicht könntet ihr mir da weiterhelfen.
Das die Umkehrfunktion [mm] f^{-1} [/mm] exisitiert ist klar, da wir von einer bijektiven Funktion ausgehen und somit folg dies unmittelbar aus der Defintion. Aber wie gehts weiter ...?
Für eure Tipps und Lösungshilfen vorab schon mal vielen Dank!
Mfg Schobbi

        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 So 07.01.2007
Autor: angela.h.b.


> Es sei f:D [mm]\to[/mm] W eine bijektive Funktion, die in a [mm]\in[/mm] D
> diff'bar sei, wobei f'(a) [mm]\not=[/mm] 0 sei. Die Umkehrfunktion
> [mm]f^{-1}[/mm] (Existenz?): W [mm]\to[/mm] D sei b:=f(a) stetig. Zeigen Sie,
> dass dann [mm]f^{-1}[/mm] in b diff'bar ist und das
> [mm]f^{-1}'(b)=\bruch{1}{f'(a)}[/mm] gilt.

Hallo,

daß [mm] f^{-1} [/mm] differenzierbar in b zeigt man, indem man zeigt, daß der Grenzwert

[mm] \limes_{y \rightarrow b}\bruch{f^{-1}(y)-f^{-1}(b)}{y-b} [/mm] existiert.

Wann existiert dieser Grenzwert?
Wenn für jede Folge [mm] (y_n) [/mm] mit [mm] y_n [/mm] -->b

[mm] \bruch{f^{-1}(y_n)-f^{-1}(b)}{y_n-b} [/mm] gegen denselben Wert konvergiert.

Sei nun [mm] (y_n) [/mm] eine Folge, die gegen b konvergiert.

Da [mm] f^{-1} [/mm] n.V. stetig in b, konvergiert [mm] f^{-1}(y_n):=x_n [/mm] gegen [mm] f^{-1}(b)=a [/mm]

Nun hat man

[mm] \limes_{n\rightarrow\infty}\bruch{f^{-1}(y_n)-f^{-1}(b)}{y_n-b} [/mm]

[mm] =\limes_{n\rightarrow\infty}\bruch{x_n-a}{f(x_n)-f(a)} [/mm]

[mm] =\limes_{n\rightarrow\infty}\bruch{1}{...}=... [/mm]

Gruß v. Angela









Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]