matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisUmkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - Umkehrfunktion
Umkehrfunktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:58 So 07.05.2006
Autor: muh06

Aufgabe
Weisen Sie nach, dass die Funktion g(x)= 1/3x + 3 - [mm] (x+4)^0.5 [/mm] für x>-7/4 eine Umkehrfunktion besitzt.

Hallo,
Ich weiss, dass die Funktion eigentlich keine Umkehrfunktion hat, weil sie ohen die Einschränkung x>-7/4 keine eineindeutige Funktion ist, daher funktioniert auch die normale Berechnung nicht.
Meine Frage ist wie ich nun die Umkehrfunktion mit Einbezug von x>-7/4 berechne.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:10 So 07.05.2006
Autor: Assurancetourix

hallo,

weise nach, daß f im geforderten intervall  streng monoton ist (-> die ableitung größer/kleiner null ist)
Aufstellen der umkehrfunktion ist ja nicht verlangt. nur der nachweis der existenz.

hoffe konnte behilflich seyn.


Bezug
                
Bezug
Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:13 So 07.05.2006
Autor: muh06

Doch leider schon, weil in einer späteren Aufgaben die Ableitung der Umkehrfunktion an der Stelle 3 gefordert ist

Bezug
                        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 So 07.05.2006
Autor: Assurancetourix


> Doch leider schon, weil in einer späteren Aufgaben die
> Ableitung der Umkehrfunktion an der Stelle 3 gefordert ist

hallo,
du hast doch sicherlich eine formelsammlung.
da solltest du irgendwo die formel für die ableitung der umkehrfunktion finden.

[mm] f^{-1}'(x)=1/(f'(f^{-1}(x))) [/mm]

Da du sie nur an der stelle 3 brauchst. Kannst du diesen einen wert [mm] f^{-1}(3) [/mm] vielleicht berechnen/ oder kennst ihn bereits aus einer anderen aufgabe.

hoffe konnte behilflich seyn...

Bezug
                                
Bezug
Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:40 So 07.05.2006
Autor: muh06

So,
Danke erst einmal für deine Bemühungen.
Habe nun als Lösung, dass eine Umkehrfunktion exsistiert, weil g(x) > g(-1.75) --> lokales Minimum und die Funktion damit Monoton steigend ist.
Als Wert an der Stelle von 3 der Ableitung der Umkehrfunktion bin ich auf
x=6.927 gekommen.


Bezug
                                        
Bezug
Umkehrfunktion: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:04 So 07.05.2006
Autor: Assurancetourix


> So,
>  Danke erst einmal für deine Bemühungen.
>  Habe nun als Lösung, dass eine Umkehrfunktion exsistiert,
> weil g(x) > g(-1.75) --> lokales Minimum und die Funktion
> damit Monoton steigend ist.
>  Als Wert an der Stelle von 3 der Ableitung der
> Umkehrfunktion bin ich auf
>  x=6.927 gekommen.
>  

[mm] f^{-1}'(3)= \bruch{1}{f'(f^{-1}(3))} [/mm]
f(12)=3 => [mm] f^{-1}(3)=12 [/mm]
[mm] f^{-1}'(3)=(f'(12))^{-1}=\bruch{6 \wurzel{12+4}}{2 \wurzel{12+4}-3}=\bruch{6*4}{2*4-3}=24/5=4,8 [/mm]

Was 6.927 soll versteh ich nicht. was hast du gerechnet?


Bezug
        
Bezug
Umkehrfunktion: tipp
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:30 So 07.05.2006
Autor: Assurancetourix

falls du denn wert noch nicht berechnet haben solltest in einer anderen teilaufgabe empfehle ich f(12) mal zu berechnen, dann sollte die ableitung der umkehrfunktion im punkt 3 hinhaun

hoffe konnt behilflich seyn...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]