matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenUmkehrfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Umkehrfunktion
Umkehrfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umkehrfunktion: Äquivalente Ergebnisse?
Status: (Frage) beantwortet Status 
Datum: 20:14 Di 03.03.2015
Autor: smoot

Aufgabe
Bilden Sie die Umkehrfunktion zu:
y = [mm] \bruch{coth(x)-tanh(x)}{coth(x)+tanh(x)} [/mm]

für [mm] x\in\IR [/mm]

Abend zusammen,

Vorab erstmal meine Rechnung:


<=> [mm] y[\bruch{cosh(x)}{sinh(x)}+\bruch{sinh(x)}{cosh(x)}]=\bruch{cosh(x)}{sinh(x)}-\bruch{sinh(x)}{cosh(x)} [/mm]

<=> [mm] \bruch{ycosh(x)^{2}}{sinh(x)}+ysinh(x)=\bruch{cosh(x)^{2}}{sinh(x)}-sinh(x) [/mm]

<=> [mm] y(cosh(x)^{2}+sinh(x)^{2})=cosh(x)^{2}-sinh(x)^{2} [/mm]

    (Additionstheoreme verwenden auf beiden Seiten)

<=> ycosh(2x) = 1

<=> [mm] \bruch{1}{y} [/mm] = cosh(2x)

<=> [mm] \bruch{arcosh(\bruch{1}{y})}{2} [/mm] = x = [mm] f^{-1}(x) [/mm]



Wolfram Alpha gibt mir jedoch als Ergebnis:

[mm] f^{-1}(x)= \pm [/mm] arctanh [mm] (\bruch{\wurzel{1-x}}{\wurzel{x+1}}) [/mm]


Frage
Ist: [mm] \bruch{arcosh(\bruch{1}{y})}{2} [/mm] = [mm] \pm [/mm] arctanh [mm] (\bruch{\wurzel{1-x}}{\wurzel{x+1}}), [/mm] oder habe ich mich bloß verrechnet bzw. einen komplizierteren "Weg" gerechnet?
Und falls ja, wo liegt mein Fehler?

Vielen Dank schon mal.

*Ich habe diese Frage in keinem anderen Forum gestellt*



        
Bezug
Umkehrfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Di 03.03.2015
Autor: MathePower

Hallo smoot,


> Bilden Sie die Umkehrfunktion zu:
>  y = [mm]\bruch{coth(x)-tanh(x)}{coth(x)+tanh(x)}[/mm]
>  
> für [mm]x\in\IR[/mm]
>  Abend zusammen,
>
> Vorab erstmal meine Rechnung:
>  
>
> <=>
> [mm]y[\bruch{cosh(x)}{sinh(x)}+\bruch{sinh(x)}{cosh(x)}]=\bruch{cosh(x)}{sinh(x)}-\bruch{sinh(x)}{cosh(x)}[/mm]
>  
> <=>
> [mm]\bruch{ycosh(x)^{2}}{sinh(x)}+ysinh(x)=\bruch{cosh(x)^{2}}{sinh(x)}-sinh(x)[/mm]
>  
> <=> [mm]y(cosh(x)^{2}+sinh(x)^{2})=cosh(x)^{2}-sinh(x)^{2}[/mm]
>  
> (Additionstheoreme verwenden auf beiden Seiten)
>  
> <=> ycosh(2x) = 1
>  
> <=> [mm]\bruch{1}{y}[/mm] = cosh(2x)
>  
> <=> [mm]\bruch{arcosh(\bruch{1}{y})}{2}[/mm] = x = [mm]f^{-1}(x)[/mm]
>  


Richtig ist:

[mm]x= \blue{\pm} \bruch{arcosh(\bruch{1}{y})}{2}[/mm]

Es gibt demnach für ein  y zwei mögliche x-Werte.

Daher ist die Umkehrfunktion auf einen Bereich einzuschränken.


>
>
> Wolfram Alpha gibt mir jedoch als Ergebnis:
>  
> [mm]f^{-1}(x)= \pm[/mm] arctanh
> [mm](\bruch{\wurzel{1-x}}{\wurzel{x+1}})[/mm]
>  
>
> Frage
>  Ist: [mm]\bruch{arcosh(\bruch{1}{y})}{2}[/mm] = [mm]\pm[/mm] arctanh
> [mm](\bruch{\wurzel{1-x}}{\wurzel{x+1}}),[/mm] oder habe ich mich
> bloß verrechnet bzw. einen komplizierteren "Weg"
> gerechnet?
>  Und falls ja, wo liegt mein Fehler?
>  


Deine Rechnung ist richtig. [ok]

Es gilt aber auch:

[mm]\pm \bruch{arcosh(\bruch{1}{y})}{2} = \pm artanh (\bruch{\wurzel{1-y}}{\wurzel{y+1}})[/mm]


> Vielen Dank schon mal.
>  
> *Ich habe diese Frage in keinem anderen Forum gestellt*
>  


Gruss
MathePower  

Bezug
                
Bezug
Umkehrfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Di 03.03.2015
Autor: Chris84


> Hallo smoot,
>  
>
> > Bilden Sie die Umkehrfunktion zu:
>  >  y = [mm]\bruch{coth(x)-tanh(x)}{coth(x)+tanh(x)}[/mm]
>  >  
> > für [mm]x\in\IR[/mm]
>  >  Abend zusammen,
> >
> > Vorab erstmal meine Rechnung:
>  >  
> >
> > <=>
> >
> [mm]y[\bruch{cosh(x)}{sinh(x)}+\bruch{sinh(x)}{cosh(x)}]=\bruch{cosh(x)}{sinh(x)}-\bruch{sinh(x)}{cosh(x)}[/mm]
>  >  
> > <=>
> >
> [mm]\bruch{ycosh(x)^{2}}{sinh(x)}+ysinh(x)=\bruch{cosh(x)^{2}}{sinh(x)}-sinh(x)[/mm]
>  >  
> > <=> [mm]y(cosh(x)^{2}+sinh(x)^{2})=cosh(x)^{2}-sinh(x)^{2}[/mm]
>  >  
> > (Additionstheoreme verwenden auf beiden Seiten)
>  >  
> > <=> ycosh(2x) = 1
>  >  
> > <=> [mm]\bruch{1}{y}[/mm] = cosh(2x)
>  >  
> > <=> [mm]\bruch{arcosh(\bruch{1}{y})}{2}[/mm] = x = [mm]f^{-1}(x)[/mm]
>  >  
>
>
> Richtig ist:
>  
> [mm]x= \blue{\pm} \bruch{arcosh(\bruch{1}{y})}{2}[/mm]
>
>
> >
> >
> > Wolfram Alpha gibt mir jedoch als Ergebnis:
>  >  
> > [mm]f^{-1}(x)= \pm[/mm] arctanh
> > [mm](\bruch{\wurzel{1-x}}{\wurzel{x+1}})[/mm]
>  >  
> >
> > Frage
>  >  Ist: [mm]\bruch{arcosh(\bruch{1}{y})}{2}[/mm] = [mm]\pm[/mm] arctanh
> > [mm](\bruch{\wurzel{1-x}}{\wurzel{x+1}}),[/mm] oder habe ich mich
> > bloß verrechnet bzw. einen komplizierteren "Weg"
> > gerechnet?
>  >  Und falls ja, wo liegt mein Fehler?
>  >  
>
>
> Deine Rechnung ist richtig. [ok]
>  
> Es gilt aber auch:
>  
> [mm]\pm \bruch{arcosh(\bruch{1}{y})}{2} = \pm arctanh (\bruch{\wurzel{1-y}}{\wurzel{y+1}})[/mm]

Nur ne kleine Anmerkung: Zumindest ich habe noch gelernt, dass die Umkehrfunktionen der Hyperbelfunktionen die Areafunktionen sind, wohingegen die Umkehrfunktionen der trigonometrischen Funktionen die Arcusfunktionen sind, deshalb auch arcosh oder artanh, aber arccos und arctan (also ein c weniger bei artanh).

Gruss,
Chris

>
>
> > Vielen Dank schon mal.
>  >  
> > *Ich habe diese Frage in keinem anderen Forum gestellt*
>  >  
>
>
> Gruss
>  MathePower  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]