matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesUmformung log. Gleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Sonstiges" - Umformung log. Gleichung
Umformung log. Gleichung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung log. Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:37 Sa 14.04.2018
Autor: doom0852

Aufgabe
Bestimme x: [mm] \bruch{k_{1}}{k_{2}} [/mm]  = [mm] \bruch{\wurzel{log(x)}}{\wurzel{log(x)-log(x_{0}))}} [/mm]

Guten Morgen!

Entweder ich denke zu kompliziert oder ich komme nur auf eine explizite x-Lösung, wenn ich die (nicht gegebene) Bedingung stelle: k1, k2 [mm] \in \IR \backslash \{0\}. [/mm]

Denn ich habe: [mm] \bruch{k_{1}^{2}}{k_{2}^{2}}(lgx-lgx_{0}+\bruch{k_{2}^{2}}{k_{1}^{2}}lg(x))=0 [/mm]

Daraus folgt:  [mm] (lgx-lgx0+\bruch{k_{2}^{2}}{k_{1}^{2}}lg(x))=0 [/mm]

und [mm] lg(x)(1+\bruch{k_{2}^{2}}{k_{1}^{2}})=lg(x_{0}) [/mm]

[mm] \gdw x10^{1+\bruch{k_{2}^{2}}{k_{1}^{2}}} [/mm] = [mm] x_{0} [/mm]

x = [mm] \bruch{x_{0}}{10^{1+\bruch{k_{2}^{2}}{k_{1}^{2}}}} [/mm]


        
Bezug
Umformung log. Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:45 Sa 14.04.2018
Autor: luis52

*Ich* rechne so: Setze [mm] $a=k_1/k_2$. [/mm] Die Gleichung ist aequivalent mit

[mm] \begin{matrix} a^2(\log(x)-\log(x_0))=\log(x) &\iff&\log(x)(a^2-1)=a^2\log(x_0) \\ &\iff&\log(x)=\frac{a^2\log(x_0)}{a^2-1} \\ &\iff&x=\exp\left(\dfrac{a^2\log(x_0)}{a^2-1}\right)\\ &\iff&x=(\exp(\log(x_0))^{a^2/(a^2-1)}\\ &\iff&x=x_0^{a^2/(a^2-1)} \end{matrix} [/mm]
          

Bezug
        
Bezug
Umformung log. Gleichung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:36 Sa 14.04.2018
Autor: doom0852

Habe bei mir einen Vorzeichenfehler entdeckt:

Es müsste: [mm] (lgx-lgx0-\bruch{k_{2}^{2}}{k_{1}^{2}}lg(x))=0 [/mm]  heißen.

Erstmal ielen Dank für die Antwort!
Ich kann deiner Lösung soweit folgen, allerdings sehe ich nicht warum
[mm] a^2\log(x_0) [/mm] = [mm] log(x_0)^{a^2} [/mm]  ist, wobei es eigentlich [mm] log(x_0^{a^2}) [/mm] sein müsste und dies ja nicht das gleiche ist, wobei [mm] a^2 [/mm]  def Term [mm] a^2/(a^2-1)darstellen [/mm] soll.
Edit: Hat sich erledigt :) habe die eine Klammer nicht gesehen vom exp. sprich exp(lg(x)) wird seperat verrechnet und das entstehende [mm] x_0 [/mm] wird noch mit dem restlichen Term exponiert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]