matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraUmformung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Umformung
Umformung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Umformung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:36 Mi 14.12.2005
Autor: Freak84

Hi Leute
Ich bin mit der Aufgabe schon fast fertig aber weis nicht genau ob ich es so machen darf.
Bitte schaut mal drüber.

Ich habe:

S =  [mm] \bruch{1}{n+1} \summe_{i=0}^{n} P_{i} [/mm]
[mm] S_{k} [/mm] =  [mm] \bruch{1}{k+1} \summe_{i=0}^{k} P_{i} [/mm]
[mm] S_{n-k} [/mm] =  [mm] \bruch{1}{n-k} \summe_{i=k+1}^{n} P_{i} [/mm]

es gilt weiter


[mm] \alpha S_{k} [/mm] +  [mm] \beta S_{n-k} [/mm] = S

eingesetzt habe ich dann

[mm] \alpha \bruch{1}{k+1} \summe_{i=0}^{k} P_{i} [/mm] +  [mm] \beta \bruch{1}{n-k} \summe_{i=k+1}^{n} P_{i} [/mm] = [mm] \bruch{1}{n+1} \summe_{i=0}^{n} P_{i} [/mm]

darf ich das nun so umschreiben :

[mm] (\alpha \bruch{1}{k+1} [/mm] +  [mm] \beta \bruch{1}{n-k} [/mm] ) [mm] \summe_{i=0}^{k} \summe_{i=k+1}^{n} P_{i} [/mm] = [mm] \bruch{1}{n+1} \summe_{i=0}^{n} P_{i} [/mm]

und daraus würde dann folgen:

[mm] \alpha \bruch{1}{k+1} [/mm] +  [mm] \beta \bruch{1}{n-k} [/mm] = [mm] \bruch{1}{n+1} [/mm]

und mit der nebenbedingung [mm] \alpha [/mm] + [mm] \beta [/mm]   = 1 kann ich die Sache doch Eindeutig lösen.
Nur ich bin mir nicht sicher ob ich Umformungsfehler gemacht habe

Gruß
Michael


        
Bezug
Umformung: alte Aufgabe?
Status: (Antwort) fertig Status 
Datum: 18:29 Do 15.12.2005
Autor: leduart

Hallo Michael.
Dies Frage ist für alle unverständlich, die nicht zufällig die Aufgabenstellung kennen. Da die Pi meiner Erinnerung nach aus einem affinen Raum stammen, kannst du sie nicht einfach addieren. Ich hatte schon mal geschrieben, wies richtiger geht.
aber auch wenn die Pi aus nem Vektorraum sind ist deine Rechnung einfach falsch!

> S =  [mm]\bruch{1}{n+1} \summe_{i=0}^{n} P_{i}[/mm]
>  [mm]S_{k}[/mm] =  
> [mm]\bruch{1}{k+1} \summe_{i=0}^{k} P_{i}[/mm]
>  [mm]S_{n-k}[/mm] =  
> [mm]\bruch{1}{n-k} \summe_{i=k+1}^{n} P_{i}[/mm]
>  
> es gilt weiter
>
>
> [mm]\alpha S_{k}[/mm] +  [mm]\beta S_{n-k}[/mm] = S
>  
> eingesetzt habe ich dann
>
> [mm]\alpha \bruch{1}{k+1} \summe_{i=0}^{k} P_{i}[/mm] +  [mm]\beta \bruch{1}{n-k} \summe_{i=k+1}^{n} P_{i}[/mm]
> = [mm]\bruch{1}{n+1} \summe_{i=0}^{n} P_{i}[/mm]
>  
> darf ich das nun so umschreiben :

NEIN mach das doch nur mal explizit für 4 Punkte! wenn man unsicher ist, sollte man mal ein Minibeispiel ausprobieren.

> [mm](\alpha \bruch{1}{k+1}[/mm] +  [mm]\beta \bruch{1}{n-k}[/mm] )
> [mm]\summe_{i=0}^{k} \summe_{i=k+1}^{n} P_{i}[/mm] = [mm]\bruch{1}{n+1} \summe_{i=0}^{n} P_{i}[/mm]
>  
> und daraus würde dann folgen:
>
> [mm]\alpha \bruch{1}{k+1}[/mm] +  [mm]\beta \bruch{1}{n-k}[/mm] =
> [mm]\bruch{1}{n+1}[/mm]
>  
> und mit der nebenbedingung [mm]\alpha[/mm] + [mm]\beta[/mm]   = 1 kann ich

das ist zwar eh falsch, aber  setz mal [mm] \alpha=1, \beta=0 [/mm] oder [mm] \alpha [/mm] =0.7, [mm] \beta=0.3 [/mm] und rechne nach! Mir scheint fast, du hast beim Addieren von Brüchen Nenner addiert. Das sollte nach Klasse 6 nicht mehr passieren!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]