matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraUVR, Basis, Fibonacci- Folge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - UVR, Basis, Fibonacci- Folge
UVR, Basis, Fibonacci- Folge < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

UVR, Basis, Fibonacci- Folge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:37 Di 27.11.2007
Autor: dorix

Aufgabe
Sei V = [mm] \left\{ (x_1, x_2,... )\in\IR^N \sub | x_k_+_2 = x_k + x_k_+_1[/mm] für alle [mm]k\in\IN \sub \right\}. [/mm]

a) Zeige, V ist Untervektorraum von [mm] \IR^N. [/mm]

b) Bestimme Dimension und Basis von V.

c) Stelle die Fibonacci- Folge (1,1,2,3,5,8...) als Linearkombination der Basis aus (b) dar.

Hallo...

Habe zu a die Bedingungen geprüft. Weiß aber nicht, wie ich genau mit einer rekursiven Folge umgehen muss.
Folge wäre ja: [mm]x_n= x_0, x_1, x_0 + x_1, x_2 + x_3...[/mm] oder?
Wie kann ich dann zu b) die Basis und die Dimension herausfinden? Was sind denn hier meine Vektoren?
und zu c), welches auf b) aufbaut, die Fibonacci - Folge als Linearkombination der Basis aus b) darstellen?

vielen Dank im Voraus

dorix


        
Bezug
UVR, Basis, Fibonacci- Folge: Hinweise dazu
Status: (Antwort) fertig Status 
Datum: 08:43 Mi 28.11.2007
Autor: statler

Guten Morgen Dorix!

> Sei V = [mm]\left\{ (x_1, x_2,... )\in\IR^N \sub | x_k_+_2 = x_k + x_k_+_1[/mm]
> für alle [mm]k\in\IN \sub \right\}.[/mm]
>  
> a) Zeige, V ist Untervektorraum von [mm]\IR^N.[/mm]
>  
> b) Bestimme Dimension und Basis von V.
>  
> c) Stelle die Fibonacci- Folge (1,1,2,3,5,8...) als
> Linearkombination der Basis aus (b) dar.

> Habe zu a die Bedingungen geprüft. Weiß aber nicht, wie ich
> genau mit einer rekursiven Folge umgehen muss.
> Folge wäre ja: [mm]x_n= x_0, x_1, x_0 + x_1, x_2 + x_3...[/mm]
> oder?
>  Wie kann ich dann zu b) die Basis und die Dimension
> herausfinden? Was sind denn hier meine Vektoren?
>  und zu c), welches auf b) aufbaut, die Fibonacci - Folge
> als Linearkombination der Basis aus b) darstellen?

Eine Folge, die auf diese Weise rekursiv definiert ist, ist doch durch die beiden Anfangsglieder völlig festgelegt. Die einfachsten Möglichkeiten dafür sind die Folgen (0, 1, ...) und (1, 1, ...). Kannst du aus diesen beiden eine vorgegeben Folge [mm] (a_{0}, a_{1}, [/mm] ...) als Linearkomb. erzeugen? Bilden sie eine Basis?

Leg mal los!

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]