matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFormale SprachenTuringmaschine umwandeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Formale Sprachen" - Turingmaschine umwandeln
Turingmaschine umwandeln < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Turingmaschine umwandeln: Gödelisierung?
Status: (Frage) überfällig Status 
Datum: 12:42 Sa 08.06.2013
Autor: bandchef

Aufgabe
Sei $M=(Q, [mm] \Sigma, \Gamma, \delta, q_0, \#, [/mm] F)$ eine beliebige TM mit [mm] $F=\{f_1, f_2, ..., f_n\}$. [/mm] Erläutern Sie, wie Sie aus M eine äquivalente TM $M'$ entwerfen können, die genau einen akzeptierenden Endzustand enthält.


Hi Leute!

Kann mir bei dieser Aufgabe jemand einen Denkanstoß geben? Vorab: Ich weiß wie ich mit einer 1-Band TM umgehe und wie ich mit k-Band TM's umgehen muss. Auch habe ich schon gelernt, dass eine TM beliebige TM's simulieren kann. Sowas nennt man dann universelle TM.

Meine erste Frage ist nun folgende: In der Aufgabe steht ja, dass man BESCHREIBEN (nix beweisen also!) soll, wie man nun diese TM mit beliebig vielen akzeptierenden Zuständen zu einer äquivalenten TM mit nur einem akzeptierenden Zustand umbauen kann.
Geht das nun indem man eine universelle TM baut, die die akzeptierenden Zustände [mm] $(f_1, f_2, [/mm] ..., [mm] f_n)$ [/mm] als beliebige Turingmaschinen simuliert?

Ich hab mir das nun mit der BESCHREIBUNG so vorgestellt:

Laut Aufgabendefinition gibt es die Turingmaschinen
TM [mm] $M_1 [/mm] = [mm] (Q_1, \Sigma_1, \Gamma_1, \delta, q_0, \#, F_1)$ [/mm] mit [mm] $Q_1=\{q_0, q_1, ..., q_n\}$ [/mm] und [mm] $F_1=\{f_1\}$, [/mm]
TM [mm] $M_2 [/mm] = [mm] (Q_2, \Sigma_2, \Gamma_2, \delta, q_0, \#, F_2)$ [/mm] mit [mm] $Q_2=\{q_0, q_2, ..., q_n\}$ [/mm] und [mm] $F_2=\{f_2\}$, [/mm]
bis
TM [mm] $M_n [/mm] = [mm] (Q_n, \Sigma_n, \Gamma_n, \delta, q_0, \#, F_n)$ [/mm] mit [mm] $Q_n=\{q_0, q_1, ..., q_n\}$ [/mm] und [mm] $F_n=\{f_n\}$. [/mm]

Die TM $M'$ simuliert nun die TM $M$, in dem sie die TM's [mm] $M_1, M_2, [/mm] ..., [mm] M_n$ [/mm] als geeignete Binärcodierung $<M>$, die Gödelisierung, erhält, und so folgendes gilt,

wenn $M'$ gestartet mit [mm] $ [/mm] x$ sich genauso verhält wie [mm] M_1 [/mm] gestartet mit x, wodurch $M'$ nur einen akzeptierenden Zustand enthält,

wenn $M'$ gestartet mit [mm] $ [/mm] x$ sich genauso verhält wie [mm] M_2 [/mm] gestartet mit x, wodurch $M'$ nur einen akzeptierenden Zustand enthält, und

wenn $M'$ gestartet mit [mm] $ [/mm] x$ sich genauso verhält wie [mm] M_n [/mm] gestartet mit x, wodurch $M'$ nur einen akzeptierenden Zustand enthält.


Könnte man diese Beschreibung so machen?

        
Bezug
Turingmaschine umwandeln: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Fr 14.06.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]