Tschebyschew? < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:51 Mi 02.02.2005 | Autor: | mila |
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt (http://www.uni-protokolle.de/foren/viewt/15004,0.html), aber bis jetzt habe ich noch keine konkrete Antwort erhalten.
hier die Aufgabe:
Ein Fliesenhersteller verpackt die produzierten Fliesen einer Sorte in Pakete zu je 50 Stück. Dabei nimmt er folgende Unterscheidungen vor:
Güteklasse A: Wahrscheinlichkeit, dass eine Fliese des Paketes fehlerhaft ist: 0,01
Güteklasse B: Wahrscheinlichkeit,...: 0,20
Bestimmen Sie, wieviele Pakete Fliesen der Güteklasse B mindestens erforderlich sind, um mit mindestens 95% Wahrscheinlichkeit mindestens 1000 fehlerfreie Fliesen zu Verfügung zu haben. Untersuchen sie dann, ob es bei gleichen Bedingungen günstiger wäre, Fliesen der Güteklasse A zu kaufen.
leider weiß ich wirklich nicht, wie ich anfangen soll, ich vermute zwar, dass ich die Aufgabe vielleicht mit der Tschebyschew Ungleichung lösen könnte, ich weiß aber nicht genau wie.
ich wäre sehr dankbar für Lösungsvorschläge oder Ansätze, die mir vielleicht helfen könnten die Aufgabe zu lösen.
Danke schonmal im Vorraus
|
|
|
|
Hi, Mila,
die Tschebyschew-Ungleichung hat zwei Nachteile:
(1) Sie ist doch "sehr grob", also ungenau.
(2) Man kann sie praktisch nur dann verwenden, wenn das Intervall bzw. die beiden Intervalle symmetrisch zum Erwartungswert liegen.
Zudem steht bei Aufgaben, wo man sie verwenden soll, fairer Weise dabei, dass man sie braucht.
Daher wirst Du hier besser mit der Normalverteilung als Näherung arbeiten!
(Oder habt ihr die noch nicht gehabt?)
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 21:00 Mi 02.02.2005 | Autor: | mila |
Hallo, danke für deinen Hinweis! Nur nochmal eine kurze Rückfrage um zu überprüfen, ob ich das jetzt auch richtig verstanden hab:
ich nehme jetzt also die Formel der Normalverteilung [mm] ((k-\mu+0,5)/(\sigma)) [/mm] mit k=1000 [mm] \mu=n\*0,9 [/mm] und [mm] \sigma=n\*0,9\*0,1
[/mm]
dann lös ich alles nach n auf und teile es letztendlich durch 50 (wegen den Paketen) ???
Ist das so gemeint oder hab ich immer noch nen Denkfehler?!
Ich bitte um Rückantwort
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:47 Mi 02.02.2005 | Autor: | Zwerglein |
Hallo, Mila,
aber vergiss bei [mm] \sigma [/mm] die Wurzel nicht!
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:51 Mi 02.02.2005 | Autor: | Zwerglein |
Und: Bei Paket B ist die Wahrscheinlichkeit für defekte Fliesen 0,2, nicht 0,1.
Pass' auf die Zahlen auf!
Nochmal:
mfG!
Zwerglein
|
|
|
|
|
Hallo, mila,
ich gebe Dir hier mal den Ansatz und die ersten Rechenschritte an:
Es liegt ja eine Binomialverteilung mit bekanntem p=0,8 (!) und unbekannter Kettenlänge n (die aber sicher > 1000 ist) vor.
Nun soll (laut Aufgabenstellung) gelten: P(X [mm] \ge [/mm] 1000) [mm] \ge [/mm] 0,95.
Da man in den meisten Tafelwerken nur Wahrscheinlichkeiten P(X [mm] \le [/mm] ...)
ablesen kann, formt man gleich um:
1 - P(X [mm] \le [/mm] 999) [mm] \ge [/mm] 0,95 bzw. P(X [mm] \le [/mm] 999) [mm] \le [/mm] 0,05 .
So: Und nun kommt die Normalverteilung ins Spiel.
Zunächst die "vorbereitenden" Arbeiten: [mm] \mu [/mm] = 1000*0,8 = 800;
Var(X) = npq > 1000*0,8*0,2=160 > 9 (daher N-Vtlg. gut brauchbar!)
Eingesetzt erhalten wir: (Weil ich den griechischen Buchstaben "groß Phi" nicht finde, scheib' ich jetzt einfach Phi!)
[mm] Phi(\bruch{999-n*0,8+0,5}{\wurzel{0,16*n}} \le [/mm] 0,05.
Mit Verwendung des Tafelwerks (Interpolation!) erhältst Du nun:
[mm] \bruch{999,5-0,8n}{\wurzel{0,16n}} \le [/mm] -1,645.
Dies nach n aufzulösen (evtl. Substitution [mm] z=\wurzel{n}; [/mm] anschließend quadratische Gleichung!) überlass' ich Dir.
PS: Wie willst Du entscheiden, ob es günstiger ist Fliesen vom Typ A oder B zu kaufen, wenn Du den jeweiligen Preis nicht kennst?!
mfG!
Zwerglein
|
|
|
|