matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationTschebyscheff Nullstellen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Interpolation und Approximation" - Tschebyscheff Nullstellen
Tschebyscheff Nullstellen < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tschebyscheff Nullstellen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:08 Mo 10.01.2011
Autor: albert1945

Ich habe eine Frage bezüglich der Interpolation der Funktion f(x) = [mm] e^{x} [/mm] bei beispielsweise 200 Stützstellen. Bei dieser Ausgangslage soll die Polynominterpolation mit den Tschebyscheff Nullstellen als Stützstellen zu einem geringeren Fehler als die Splineinterpolation führen.
Dies wurde bei uns jedoch nicht weiter erläutert, warum dies so ist.
Meine Vermutung liegt darin, dass das was mit den Fehlerabschätzungen zu tun hat und damit, dass die e-Funktion n-mal differenzierbar ist. Ich habe jedoch Probleme, diesen Gedankengang weiterzuführen und brauche daher Hilfe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tschebyscheff Nullstellen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:33 Do 13.01.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]