matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesTrigonometrische Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Trigonometrische Gleichung
Trigonometrische Gleichung < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonometrische Gleichung: Beweis
Status: (Frage) beantwortet Status 
Datum: 16:30 Di 17.11.2009
Autor: kagie

Aufgabe
Bestimmen Sie alle reelen Lösungen der folgenden trigonometrischen Gleichungen:
a) sin(2x)=cosx ( Nutzen Sie Additionstherme )
b) 2sin2x=sinx+1 ( Substituieren sie sinx)
Geben Sie für beide Aufgaben die Lösungsmengen an.

Hallo.
Leider fehlt mir jeglicher logischer Ansatz.
Zu A )
cosx ist ja 2sin(x) cos (x)
Doch wie bringe ich das mit sin(2x ) in Verbindung.
Sind 2 (x) ist ja sin (x +x ).
Mir fehlt da der Ansatz.
zu B )
da ist mir bekannt, dass sin2x+cos2x= 1 sind
cos2x ist ja demzufolge 1-sin2x.
Wäre um jeden Tipp dankbar.
Danke :-)
LG
Kagie

        
Bezug
Trigonometrische Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Di 17.11.2009
Autor: fred97


> Bestimmen Sie alle reelen Lösungen der folgenden
> trigonometrischen Gleichungen:
>  a) sin(2x)=cosx ( Nutzen Sie Additionstherme )
>  b) 2sin2x=sinx+1 ( Substituieren sie sinx)

Hier muß wohl $2sin^2x=sinx+1$ lauten , stimmts ?


>  Geben Sie für beide Aufgaben die Lösungsmengen an.
>  Hallo.
>  Leider fehlt mir jeglicher logischer Ansatz.
> Zu A )
>  cosx ist ja 2sin(x) cos (x)
>  Doch wie bringe ich das mit sin(2x ) in Verbindung.
>  Sind 2 (x) ist ja sin (x +x ).
>  Mir fehlt da der Ansatz.
>  zu B )
>  da ist mir bekannt, dass sin2x+cos2x= 1 sind
>  cos2x ist ja demzufolge 1-sin2x.
>  Wäre um jeden Tipp dankbar.


Zu a)Das Additionstheorem liefert: $sin(2x) = 2sin(x)*cos(x)$

Somit:

  $sin(2x)=cos(x) [mm] \gdw [/mm] 2sin(x)*cos(x)= cos(x) [mm] \gdw [/mm] cos(x)*(2sin(x)-1) = 0 [mm] \gdw [/mm] cos(x) = 0$ oder $ sin(x) =1/2$


Zu b)
   Folge dem Hinweis und setze $t= sin(x)$. Dann:

            $2sin^2x=sinx+1 [mm] \gdw t^2=t+1$ [/mm]

Hilft das ?

FRED


>  Danke :-)
>  LG
>  Kagie


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]