matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraTrigonalisierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Trigonalisierbarkeit
Trigonalisierbarkeit < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trigonalisierbarkeit: Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 14:40 Sa 15.01.2005
Autor: Fingolfin

Hi,
Ich beschäftige mich zur Zeit mir folgender Aufgabe und habe keine Idee.

Seien A,B [mm] \in Mat_n(K) [/mm] zwei trigonalisierbare Matritzen.
Ich soll jetzt beweisen oder wiederlegen, dass (a) die Summe A+B trigonalisierbar ist und (b) das Produkt AB trigonalisierbar ist.

Ich weiß, dass wenn das char. Polynom in Linearfaktoren zerfällt, die betreffende Matrix dann trigonalisierbar ist. Aber ich finde einfach keinen Ansatz.
Danke schonmal für die Hilfe. :D



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Trigonalisierbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 So 16.01.2005
Autor: Fingolfin

Hat keiner eine Idee?

Ich hab versucht zu AB ein Gegenbeispiel zu finden, habe aber bis jetzt keins gefunden.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]