Trennung der Variablen < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien c> 0, [mm]sum_{j=1}^{\infty} a_j sin(jx)[/mm] und [mm] u_0(x)= sum_{j=1}^{/infty} b_j sin(jx) [/mm] gegeben.
Verwenden sie den Ansatz [mm] u(x,t) = \phi(x) \varphi(x) [/mm] um eine Lösung des folgenden Anfangs- und Randwertproblemes zu konstruieren:
[mm] u_{tt} - c^2 u_{xx} = 0 [/mm]
[mm] u(-\pi , t) = u(\pi, t) = 0 [/mm]
[mm] u(x,0) = u_0(x) , u_t(x,0) = v_0(x) , x \in (-\pi ,\pi) [/mm] |
Hallo, wir haben bei der gegebenen Aufgabe jetzt mal angefangen [mm] \phi und \varphi [/mm] auszurechnen. Wir haben dabei die Gleichung umgeformt zu [mm] \frac{\phi '' (t)} {\phi(t)} = c^2 * \frac{\varphi '' (x)}{\varphi(x)} = k [/mm] gesetzt. Und weiter umgeformt zu [mm] \phi''(t) -k*\phi(t) = 0 [/mm] und äuqivalent für [mm] \varphi [/mm]. Dann haben wir eine Fallunterscheidung für k angefangen:
1. k > 0
Dabei kam raus [mm] \phi(t) = a * e^{i \wurzel{k} t) [/mm] und [mm] \varphi(x) = b * e^{\frac{i}{c} \wurzel{k} x) [/mm].
Nun zur Frage:
Wenn ich das in u(x,t) einsetze kommt heraus [mm] u(x,t) = d*e^{i\wurzel{k}t+\frac{i}{c}\wurzel{k}x) [/mm]
Setze ich nun hier die Anfangsbedingung [mm] u(- \pi,t) = 0 [/mm] ein, kommt heraus dass d = 0 sein muss, da die Exponentialfunktion nie negativ wird.
Gibt es also keine andere Lösung außer der trivialen? Oder haben wir hier irgendwas falsch eingesetzt?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Chrissiesl,
> Seien c> 0, [mm]sum_{j=1}^{\infty} a_j sin(jx)[/mm] und [mm]u_0(x)= sum_{j=1}^{/infty} b_j sin(jx)[/mm]
> gegeben.
> Verwenden sie den Ansatz [mm]u(x,t) = \phi(x) \varphi(x)[/mm] um
> eine Lösung des folgenden Anfangs- und Randwertproblemes
> zu konstruieren:
> [mm]u_{tt} - c^2 u_{xx} = 0[/mm]
> [mm]u(-\pi , t) = u(\pi, t) = 0[/mm]
>
> [mm]u(x,0) = u_0(x) , u_t(x,0) = v_0(x) , x \in (-\pi ,\pi)[/mm]
>
> Hallo, wir haben bei der gegebenen Aufgabe jetzt mal
> angefangen [mm]\phi und \varphi[/mm] auszurechnen. Wir haben dabei
> die Gleichung umgeformt zu [mm]\frac{\phi '' (t)} {\phi(t)} = c^2 * \frac{\varphi '' (x)}{\varphi(x)} = k[/mm]
> gesetzt. Und weiter umgeformt zu [mm]\phi''(t) -k*\phi(t) = 0[/mm]
> und äuqivalent für [mm]\varphi [/mm]. Dann haben wir eine
> Fallunterscheidung für k angefangen:
> 1. k > 0
> Dabei kam raus [mm]\phi(t) = a * e^{i \wurzel{k} t)[/mm] und
> [mm]\varphi(x) = b * e^{\frac{i}{c} \wurzel{k} x) [/mm].
>
Das sind die Lösungen für k < 0.
Dann müssen diese so lauten:
[mm]\phi(t) = a_{1} * e^{i \wurzel{\vmat{k}} t}+a_{2} * e^{-i \wurzel{\vmat{k}} t}[/mm]
[mm]\varphi(x) = b_{1} * e^{\frac{i}{c} \wurzel{\vmat{k}} x}+ b_{2} * e^{-\frac{i}{c} \wurzel{\vmat{k}} x}[/mm].
> Nun zur Frage:
> Wenn ich das in u(x,t) einsetze kommt heraus [mm]u(x,t) = d*e^{i\wurzel{k}t+\frac{i}{c}\wurzel{k}x)[/mm]
>
> Setze ich nun hier die Anfangsbedingung [mm]u(- \pi,t) = 0[/mm] ein,
> kommt heraus dass d = 0 sein muss, da die
> Exponentialfunktion nie negativ wird.
> Gibt es also keine andere Lösung außer der trivialen?
> Oder haben wir hier irgendwas falsch eingesetzt?
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruss
MathePower
|
|
|
|
|
Okay, ich habe jetzt die beiden Funktionen eingesetzt, danke. Aber auch hier bekomme ich doch für u(x,t) eine Funktion raus, in der nur Konstanten a,b,c und d und e-Funktionen stehen. Dass heißt wenn das ganze 0 geben soll habe ich wieder das Problem, dass schon alle Konstanten gleich 0 sein müssen, oder?
|
|
|
|
|
Hallo Chrissiesl,
> Okay, ich habe jetzt die beiden Funktionen eingesetzt,
> danke. Aber auch hier bekomme ich doch für u(x,t) eine
> Funktion raus, in der nur Konstanten a,b,c und d und
> e-Funktionen stehen. Dass heißt wenn das ganze 0 geben
> soll habe ich wieder das Problem, dass schon alle
> Konstanten gleich 0 sein müssen, oder?
Für die gegebenen Anfangsbedingungen
ist eine nicht identisch verschwindende
Lösungsfunktion zu finden.
Gruss
MathePower
|
|
|
|