matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenTrennung der Variablen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Trennung der Variablen
Trennung der Variablen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Trennung der Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:50 Do 26.11.2015
Autor: X3nion

Aufgabe
Bestimmen Sie die Lösung des folgenden Anfangswertproblems mittels des Verfahrens Trennung der Variablen:
[mm] \frac{y'(x)}{x^{3}} [/mm] = 4 * (y(x) + 2)

Guten Abend,
Nun soll ich die gegebene DGL mittels Trennung der Variablen lösen.

Nun gut, 1. Schritt ist ja die Trennung idenfitifieren und stationäre Lösungen suchen:
y'(x) = 4 * (y(x) + 2) * [mm] x^{3} [/mm]
Somit kann ich doch f(x) = [mm] x^{3} [/mm] und g(y) = 4(y(x) + 2) wählen oder?
Und ist dann die stationäre Lösung y = -2 für alle [mm] x\in\IR, [/mm] da g(-2) = 4*(-2+2) = 0 ?

2. Schritt ist Separieren und integrieren:

[mm] \frac{y'(x)}{x^{3}} [/mm] = 4 * (y(x) + 2) <=> [mm] \frac{y'(x)}{(y(x) + 2)} [/mm] = 4 * [mm] x^{3} [/mm]
Auf beiden Seiten Integrieren ergibt:
[mm] \integral_{}^{} \frac{y'(x)}{(y(x) + 2)} [/mm] dx = [mm] \integral_{}^{} [/mm] 4 * [mm] x^{3} [/mm] dx
Mit der Substitution z = y(x) + 2 und [mm] \frac{dz}{dx} [/mm] = y'(x) <=> y'(x) * dx = dz folgt:
[mm] \integral_{}^{} \frac{1}{z} [/mm] * dz = [mm] \integral_{}^{} [/mm] 4 * [mm] x^{3} [/mm] dx
<=> ln(|z|) = [mm] x^{4} [/mm] + C mit C [mm] \in \IR [/mm]

3. Rücksubstitution: |y(x) + 2| = [mm] e^{x^{4} + C} [/mm]
Ist nun [mm] y_{1}(x) [/mm] = [mm] e^{x^{4} + C} [/mm] - 2 und [mm] y_{2}(x) [/mm] = - [mm] e^{x^{4} + C} [/mm] - 2 ?


Würde mich über eure Antworten freuen!

Viele Grüße,
X³nion

        
Bezug
Trennung der Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:33 Fr 27.11.2015
Autor: fred97


> Bestimmen Sie die Lösung des folgenden Anfangswertproblems
> mittels des Verfahrens Trennung der Variablen:
>  [mm]\frac{y'(x)}{x^{3}}[/mm] = 4 * (y(x) + 2)
>  Guten Abend,
>  Nun soll ich die gegebene DGL mittels Trennung der
> Variablen lösen.
>  
> Nun gut, 1. Schritt ist ja die Trennung idenfitifieren und
> stationäre Lösungen suchen:
>  y'(x) = 4 * (y(x) + 2) * [mm]x^{3}[/mm]
>  Somit kann ich doch f(x) = [mm]x^{3}[/mm] und g(y) = 4(y(x) + 2)
> wählen oder?
>  Und ist dann die stationäre Lösung y = -2 für alle
> [mm]x\in\IR,[/mm] da g(-2) = 4*(-2+2) = 0 ?
>  
> 2. Schritt ist Separieren und integrieren:
>  
> [mm]\frac{y'(x)}{x^{3}}[/mm] = 4 * (y(x) + 2) <=> [mm]\frac{y'(x)}{(y(x) + 2)}[/mm]
> = 4 * [mm]x^{3}[/mm]
>  Auf beiden Seiten Integrieren ergibt:
>  [mm]\integral_{}^{} \frac{y'(x)}{(y(x) + 2)}[/mm] dx =
> [mm]\integral_{}^{}[/mm] 4 * [mm]x^{3}[/mm] dx
>  Mit der Substitution z = y(x) + 2 und [mm]\frac{dz}{dx}[/mm] =
> y'(x) <=> y'(x) * dx = dz folgt:
>  [mm]\integral_{}^{} \frac{1}{z}[/mm] * dz = [mm]\integral_{}^{}[/mm] 4 *
> [mm]x^{3}[/mm] dx
>  <=> ln(|z|) = [mm]x^{4}[/mm] + C mit C [mm]\in \IR[/mm]

>  
> 3. Rücksubstitution: |y(x) + 2| = [mm]e^{x^{4} + C}[/mm]
>  Ist nun
> [mm]y_{1}(x)[/mm] = [mm]e^{x^{4} + C}[/mm] - 2 und [mm]y_{2}(x)[/mm] = - [mm]e^{x^{4} + C}[/mm]
> - 2 ?
>  

Alles richtig

FRED

>
> Würde mich über eure Antworten freuen!
>  
> Viele Grüße,
>  X³nion


Bezug
                
Bezug
Trennung der Variablen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Mo 30.11.2015
Autor: X3nion

Alles klar, danke für's Drüberschauen Fred!

Gruß X³nion

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]