Transformationsmatrix zur JNF < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei
[mm] $$A:=\pmat{ 2 & 1 & 2 & 1 & -1 \\ 1& 3 & 3 & 1 & -1 \\ 0 & 0 & 1& -1 & 0 \\0 & 0 & 1 & 3 & 0\\ 1& 1 & 2 & 0 & 1}\in\IQ^{5\times 5}$$
[/mm]
Bestimmen Sie eine Matrix [mm] $T\in\operatorname{GL}_5\left(\IQ\right)$, [/mm] so dass [mm] $T^{-1}AT$ [/mm] Jordan-Normalform hat. |
Hallo!
Da die Klausur sehr nach rückt und wir einfach den Algorithmus nicht verstehen, hier meine Frage:
Habe das charakteristische Polynom [mm] $\chi_A=\left(X-2\right)^5$ [/mm] bestimmt. Da [mm] $\left(A-2E_5\right)^3=0$, [/mm] bestimme ich Basen der Kerne von [mm] $A-2E_5$, $\left(A-2E_5\right)^2$ [/mm] und [mm] $\left(A-2E_5\right)^3$. [/mm] Diese sind
[mm] $B_1:=\left\{\vektor{0 \\ 1\\0\\0\\1},\vektor{1 \\ 1\\-1\\1\\0}\right\}$ [/mm] und [mm] $B_2:=\left\{\vektor{0 \\ 1\\0\\0\\1},\vektor{1 \\ 0\\0\\0\\0},\vektor{0 \\ 0\\0\\1\\0},\vektor{0 \\ -1\\1\\0\\0}\right\}$ [/mm] und [mm] $B_3:=\left\{\vektor{1 \\ 0\\0\\0\\0},\vektor{0 \\ 1\\0\\0\\0},\vektor{0 \\ 0\\1\\0\\0},\vektor{0 \\ 0\\0\\1\\0},\vektor{0 \\ 0\\0\\0\\1}\right\}$
[/mm]
Nun steht aber in der Musterlösung
[mm] $B_1:=\left\{\vektor{0 \\ 1\\0\\0\\1},\vektor{1 \\ 1\\-1\\1\\0}\right\}$ [/mm] und [mm] $B_2:=B_1\cup\left\{\vektor{1 \\ 0\\0\\0\\0},\vektor{0 \\ 0\\0\\1\\0}\right\}$ [/mm] und [mm] $B_3:=B_2\cup\left\{\vektor{0 \\ 0\\0\\0\\1}\right\}$
[/mm]
Nun die Frage: wie kommt man auf die Vektoren, die man zur Basis [mm] $B_2$ [/mm] bzw. [mm] $B_3$ [/mm] hinzufügt und wie macht man weiter?
Vielen Dank!!
Stefan.
|
|
|
|
Hallo Stefan-auchLotti,
> Es sei
> [mm]A:=\pmat{ 2 & 1 & 2 & 1 & -1 \\ 1& 3 & 3 & 1 & -1 \\ 0 & 0 & 1& -1 & 0 \\0 & 0 & 1 & 3 & 0\\ 1& 1 & 2 & 0 & 1}\in\IQ^{5\times 5}[/mm]
>
> Bestimmen Sie eine Matrix
> [mm]T\in\operatorname{GL}_5\left(\IQ\right)[/mm], so dass [mm]T^{-1}AT[/mm]
> Jordan-Normalform hat.
> Hallo!
>
> Da die Klausur sehr nach rückt und wir einfach den
> Algorithmus nicht verstehen, hier meine Frage:
>
> Habe das charakteristische Polynom
> [mm]\chi_A=\left(X-2\right)^5[/mm] bestimmt. Da
> [mm]\left(A-2E_5\right)^3=0[/mm], bestimme ich Basen der Kerne von
> [mm]A-2E_5[/mm], [mm]\left(A-2E_5\right)^2[/mm] und [mm]\left(A-2E_5\right)^3[/mm].
> Diese sind
>
> [mm]B_1:=\left\{\vektor{0 \\ 1\\0\\0\\1},\vektor{1 \\ 1\\-1\\1\\0}\right\}[/mm]
> und [mm]B_2:=\left\{\vektor{0 \\ 1\\0\\0\\1},\vektor{1 \\ 0\\0\\0\\0},\vektor{0 \\ 0\\0\\1\\0},\vektor{0 \\ -1\\1\\0\\0}\right\}[/mm]
> und [mm]B_3:=\left\{\vektor{1 \\ 0\\0\\0\\0},\vektor{0 \\ 1\\0\\0\\0},\vektor{0 \\ 0\\1\\0\\0},\vektor{0 \\ 0\\0\\1\\0},\vektor{0 \\ 0\\0\\0\\1}\right\}[/mm]
>
> Nun steht aber in der Musterlösung
>
> [mm]B_1:=\left\{\vektor{0 \\ 1\\0\\0\\1},\vektor{1 \\ 1\\-1\\1\\0}\right\}[/mm]
> und [mm]B_2:=B_1\cup\left\{\vektor{1 \\ 0\\0\\0\\0},\vektor{0 \\ 0\\0\\1\\0}\right\}[/mm]
> und [mm]B_3:=B_2\cup\left\{\vektor{0 \\ 0\\0\\0\\1}\right\}[/mm]
>
> Nun die Frage: wie kommt man auf die Vektoren, die man zur
> Basis [mm]B_2[/mm] bzw. [mm]B_3[/mm] hinzufügt und wie macht man weiter?
Die hinzuzufügenden Vektoren zu [mm]B_{2}[/mm] sind
diejenigen Vektoren , die nicht in [mm]B_{1}[/mm] liegen.
Die hinzuzufügenden Vektoren zu [mm]B_{3}[/mm] sind
diejenigen Vektoren , die nicht in [mm]B_{2}[/mm] und nicht in [mm]B_{1}[/mm] liegen.
>
> Vielen Dank!!
>
> Stefan.
Gruss
MathePower
|
|
|
|