matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenTransformationsmatrix
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Transformationsmatrix
Transformationsmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationsmatrix: Tipps
Status: (Frage) beantwortet Status 
Datum: 15:35 Sa 24.03.2012
Autor: Mathegirl

Aufgabe
Bestimme die Transformationsmatrix [mm] T_B^A! [/mm]

A=((1,-1,2),(2,3,7),(2,3,6))
B=((1,2,2),(-1,3,3),(-2,7,6))

Könnt ihr mir erklären, wie man eine Transformationsmatrix bestimmt? Das hab ich nicht verstanden.

Die Transformationsmatrix zu dieser Aufgabe muss lauten:

[mm] T_B^A=\pmat{ 1 & 2,6 & 2,4 \\ 6 & 8,6 & 6,4 \\ -3 & -4 & -3 } [/mm]

MfG
Mathegirl

        
Bezug
Transformationsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Sa 24.03.2012
Autor: barsch

Hi,


> Bestimme die Transformationsmatrix [mm]T_B^A![/mm]
>  
> A=((1,-1,2),(2,3,7),(2,3,6))
>  B=((1,2,2),(-1,3,3),(-2,7,6))

sei [mm]A=(a_1,a_2,a_3)[/mm] und [mm]B=(b_1,b_2,b_3)[/mm]. Dann musst du die Vektoren aus A mithilfe der Vektoren aus B darstellen. Sprich

[mm]a_1=x_1*b_1+y_1*b_2+z_1*b_3[/mm],

[mm]a_2=x_2*b_1+y_2*b_2+z_2*b_3[/mm],

[mm]a_3=...[/mm]

Dann ist:

[mm]T^A_B=\pmat{ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 } [/mm]


>  Könnt ihr mir erklären, wie man eine
> Transformationsmatrix bestimmt? Das hab ich nicht
> verstanden.
>
> Die Transformationsmatrix zu dieser Aufgabe muss lauten:
>  
> [mm]T_B^A=\pmat{ 1 & 2,6 & 2,4 \\ 6 & 8,6 & 6,4 \\ -3 & -4 & -3 }[/mm]
>  
> MfG
>  Mathegirl

Gruß
barsch


Bezug
                
Bezug
Transformationsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:23 So 25.03.2012
Autor: Mathegirl

Danke Barsch, mir war wohl nicht so ganz klar, dass Transformationsmatrizen und Darstellungsmatrizen das gleiche sind. ;-)

MfG
Mathegirl

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]