matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieTransformation von W-Räumen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - Transformation von W-Räumen
Transformation von W-Räumen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformation von W-Räumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Do 02.05.2013
Autor: sissile

Aufgabe
Allgemeine Wahrscheinlichkeits- Räume

Satz:
Die Abbildung [mm] \overline{P} [/mm] : [mm] \mathcal{\overline{A}} [/mm] -> [0,1] definiert durch [mm] \overline{P}(A)= P(\phi^{-1} [/mm] (A)), A [mm] \in \mathcal{\overline{A}} [/mm] ist ein W-Maß auf auf [mm] (\overline{\Omega},\mathcal{\overline{A}}) [/mm] . [mm] \overline{P} [/mm] heißt Verteilung von [mm] \phi [/mm] unter P

Wir hatten nun ein Bsp wo wir den Satz angewendet haben( unabhängige 0-1 Folge mit Erfolgsparameter 1/2)
[mm] (\Omega, \mathcal{A}, [/mm] P)= ([0,1), Borelmenge([0,1)), Lebesgue-Maß)
[mm] \overline{\Omega}= \{0,1\}^{\IN} [/mm]
A wurde als Zylindermenge definiert, wenn A die Form:
A= [mm] \{ \omega =(\omega_1 ,\omega_2 ,..): \omega_i= x_i \forall i \in I\}, [/mm] wobei I endlich, [mm] x_i \in \{0,1\} [/mm]
Und [mm] \mathcal{\overline{A}} [/mm] = [mm] \sigma(Zylindermenge) [/mm] die kleinste [mm] \sigma-Algebra [/mm] die alle Zylindermengen enthält.
(*)

Wir definieren jetzt [mm] \phi [/mm] : [mm] \Omega [/mm] -> [mm] \overline{\Omega} [/mm] durch die binäre Darstellung:
[mm] \phi(\omega)= (\phi_1 (\omega), \phi_2 (\omega),..) [/mm]
wobei [mm] \phi_k (\omega)= \begin{cases} 0, & \mbox{für } \omega \in \bigcup_{i=0}^{2^{k-1}-1} [i 2^{-k+1},i 2^{-k+1} + 2^{-k}] \\ 1, & \mbox{sonst } \end{cases} [/mm] (**)

Dann haben wir gezeigt, dass [mm] \phi [/mm] messbar ist (Beweis war mir klar)

Sei [mm] X_i (\omega)= \omega_i, \omega= (\omega_1 [/mm] , [mm] \omega_2 [/mm] ,..), [mm] x_i \in \{0,1\}, [/mm] I endlich
[mm] \overline{P}(X_i=x_i \forall [/mm] i [mm] \in [/mm] I)= [mm] \overline{P} (\{ \omega \in \overline{\omega} : \omega_i = x_i \forall i \in I \} [/mm] = [mm] P(\{ y \in \Omega: \phi_i (y)=x_i \forall i \in I\})= 2^{-|I|} [/mm] = [mm] \prod_{i\in I} P[X_i=x_i] [/mm]
(***)


Hallo,
Wenn mal wer lust hat sich mit dem Thema zu beschäftigen, würd ich mich freuen wenn er/sie meine Fragen dazu beantworten könnte.
LG


(*)FRAGE1: Wieso sind die Zylindermengen durchschnittstabil? Denn dass
war eine vorrausetzung für die Konstruktion.

(**) FRAGE 2:
Was soll diese Konstruktion von [mm] \phi_k. [/mm] Ich verstehe nicht was diese soll mit den Zweierpotenzen? Ich habe mir schon [mm] \phi_1 [/mm] und [mm] \phi_2 [/mm] aufgezeichnet, aber was ist der sinn hinter [mm] \phi(\omega)=(\phi_1 (\omega), \phi_2 (\omega),..) [/mm]

(***) FRAGE 3:
Wie kommt man auf die zweierPotenz:
[mm] P(\{ y \in \Omega: \phi_i (y)=x_i \forall i \in I\})= 2^{-|I|} [/mm]
und auf
[mm] 2^{-|I|} [/mm] = [mm] \prod_{i\in I} P[X_i=x_i] [/mm]
??


        
Bezug
Transformation von W-Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 Fr 03.05.2013
Autor: tobit09

Hallo sissile,


> (*)FRAGE1: Wieso sind die Zylindermengen
> durchschnittstabil? Denn dass
> war eine vorrausetzung für die Konstruktion.

Wofür benötigst du das?

Die Zylindermengen, wie ihr sie definiert habt, sind nicht durchschnittsstabil. Nimmt man jedoch die leere Menge als Zylindermenge hinzu, werden die Zylindermengen durchschnittsstabil.


> $ [mm] \phi_k (\omega)= \begin{cases} 0, & \mbox{für } \omega \in \bigcup_{i=0}^{2^{k-1}-1} [i 2^{-k+1},i 2^{-k+1} + 2^{-k}] \\ 1, & \mbox{sonst } \end{cases} [/mm] $

Ich nehme mal an, es soll $[i [mm] 2^{-k+1},i 2^{-k+1} [/mm] + [mm] 2^{-k})$ [/mm] statt $[i [mm] 2^{-k+1},i 2^{-k+1} [/mm] + [mm] 2^{-k}]$ [/mm] heißen?

> (**) FRAGE 2:
>  Was soll diese Konstruktion von [mm]\phi_k.[/mm] Ich verstehe nicht
> was diese soll mit den Zweierpotenzen? Ich habe mir schon
> [mm]\phi_1[/mm] und [mm]\phi_2[/mm] aufgezeichnet, aber was ist der sinn
> hinter [mm]\phi(\omega)=(\phi_1 (\omega), \phi_2 (\omega),..)[/mm]

Der Sinn der gesamten Konstruktion ist ja, eine stochastisch unabhängige Folge auf [mm] $\{0,1\}$ [/mm] Laplace-verteilter Zufallsgrößen zu konstruieren.

Vielleicht zeichnest du dir auch die Intervalle aus der Definition von [mm] $\phi_3$ [/mm] einmal auf? Daran erkennt man vielleicht besser als bei [mm] $\phi_1$ [/mm] und [mm] $\phi_2$, [/mm] welche Intervalle betrachtet werden.

Für jedes [mm] $k\in\IN$ [/mm] bilden die Intervalle

      [mm] $I_i^k:=[i2^{-k},i2^{-k}+2^{-k})$ [/mm]      für [mm] $i=0,\ldots,2^k-1$ [/mm]

eine disjunkte Zerlegung von $[0,1)$ in [mm] $2^k$ [/mm] Teilintervalle der Länge [mm] $2^{-k}$. [/mm]

Es gilt

     [mm] $\phi_k(\omega)=\begin{cases}0, & \mbox{für } \omega \in \bigcup_{i=0}^{2^{-k}-1}I_{2i}^k\\1, & \mbox{für } \omega \in \bigcup_{i=0}^{2^{-k}-1}I_{2i+1}^k\\\end{cases}$. [/mm]

Um [mm] $\phi_k(\omega)$ [/mm] zu bestimmen, betrachtet man also, in welchem der [mm] $2^k$ [/mm] vielen Teilintervalle [mm] $\omega$ [/mm] liegt (etwa [mm] $\omega\in I_i^k$) [/mm] und ordnet [mm] $\omega$ [/mm] dann eine $0$ oder $1$ zu, je nachdem ob $i$ gerade oder ungerade ist.


> (***) FRAGE 3:
>  Wie kommt man auf die zweierPotenz:
> [mm]P(\{ y \in \Omega: \phi_i (y)=x_i \forall i \in I\})= 2^{-|I|}[/mm]
> und auf
> [mm]2^{-|I|}[/mm] = [mm]\prod_{i\in I} P[X_i=x_i][/mm]

Sei [mm] $n\in\IN$ [/mm] mit [mm] $n\ge [/mm] i$ für alle [mm] $n\in [/mm] I$ (z.B. [mm] $n=\max [/mm] I$ im Falle [mm] $I\not=\emptyset$). [/mm] Man kann sich dann (mit etwas Aufwand induktiv) überlegen, dass

     [mm] $\{ y \in \Omega: \phi_i (y)=x_i \forall i \in I\}=\bigcup_{j\in J}I_j^n$ [/mm]

für eine [mm] $\bruch{2^n}{2^{|I|}}$-elementige [/mm] Teilmenge [mm] $J\subseteq\{0,\ldots,2^{-n}\}$ [/mm] gilt.

Die Menge, deren Wahrscheinlichkeit wir suchen, ist also die (disjunkte) Vereinigung von [mm] $\bruch{2^n}{2^{|I|}}$ [/mm] der [mm] $2^n$ [/mm] Teilintervalle der Länge [mm] $2^{-n}$. [/mm]


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]