Träger und Oberflächenmaß < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 15:17 Fr 21.08.2015 | Autor: | Zoey_01 |
Aufgabe | Sei [mm] v \colon \mathds{R} \times \lbrack 0, \infty) \to \mathds{R} [/mm] eine glatte Funktion mit kompaktem Träger. Im Folgenden sei [mm] \Omega = \mathds{R} \times \left[0 , \infty \right)[/mm] und [mm]\partial \Omega = \mathds{R} \times \{ t=0 \}[/mm]. [mm]\sigma[/mm] bezeichnet das Oberflächenmaß auf dem Rand von [mm] \Omega[/mm].
[mm]
\int_{\Omega} (u_t + f(u)_x)v dt dx
= - \int_{\Omega} uv_t dt dx + \int_{\partial \Omega} uv \nu^t d\sigma(t) - \int_{\Omega} f(u)v_x dx dt + \int_{\partial \Omega} f(u)v \nu^x d\sigma(x)
[/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
ich bin mir nicht sicher, ob ich die Frage im richtigen Bereich stelle, aber da ich das erste mal damit in der numerischen PDGL Vorlesung Bekanntschaft gemacht habe, dachte ich das kann ja nicht ganz falsch sein. Also meine Frage:
Ich weiß was ich in der Anwendung mit einer Funktion mit kompaktem Träger mache (bei der Integration fallen die Randterme einfach weg) - was mir jedoch fehlt ist eine formale Definition dafür, wieso die eigentlich immer wegfallen. Ich integriere und streiche dann den Teil immer weg, aber wieso eigentlich konkret? Mir fehlt vermutlich ein grundsätzliches Verständnis vom "kompakten Träger". Ich weiß z.B. auch, dass bei meiner Aufgabe aufgrund des Normalenvektors (0,-1) das erste Integral aus dσ(x)=-1dx wird, aber ich brauche irgendwie eine Definition/Erläuterung, mit der ich wirklich nachweisen kann, wieso ich das so machen darf. Vielleicht kann mir da ja jemand helfen :)
Außerdem würde ich mich auch über eine Definition oder genauen Erläuterung vom Oberflächenmaß ( d sigma(x)) freuen. Auch das wurde bei uns in der Vorlesung eingeführt und sigma macht wohl etwas mit den Einträgen des Normalenvektors, so dass wir im einfachsten Fall immer 1 oder 0 rausbekommen. Aber was genau ist das Oberflächenmaß?
Ich würde mich über Hilfe freuen :)
Liebe Grüße
Zoey
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Sa 29.08.2015 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|