matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikTotale Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Diskrete Mathematik" - Totale Funktion
Totale Funktion < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totale Funktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:30 Di 26.02.2019
Autor: magics

Aufgabe
Seien $M$ und $N$ beliebige endliche Mengen. Eine Funktion $f : M [mm] \to [/mm] N$ heißt total, wenn für alle $a [mm] \in [/mm] M$ (genau) ein $b [mm] \in [/mm] N$ existiert, so dass $f(a) = b$ gilt, d.h. $f$ hat keine Definitionslücken.

Wir wählen speziell $M = [mm] \{0,1\} [/mm] × [mm] \{0,1\} \times [/mm] ... [mm] \times \{0,1\} [/mm] = [mm] \{0,1\}^n$ [/mm] und $N = {0,1}$. Wie viele verschiedene totale Funktionen $f : M [mm] \to [/mm] N$ dieses Typs gibt es?

Hallo ihr Leut,

meine Antwort lautet [mm] $2^{2^n}$. [/mm]

Denn das n-fache kartesische Produkt von [mm] $\{0,1\}$ [/mm] mit sich selbst hat genau [mm] $2^n$ [/mm] Elemente. Jedes dieser Elemente kann ich entweder auf $0 [mm] \in [/mm] N$ oder auf $1 [mm] \in [/mm] N$ abbilden. Somit gibt es insgesamt [mm] $2^{2^n}$ [/mm] Möglichkeiten.

Ist das korrekt?

Grüße
Thomas

        
Bezug
Totale Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Di 26.02.2019
Autor: hippias

Das ist richtig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]