| Tietze-Transformationen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe 
 
 
  |  |  
  | 
    
     | 
 | Aufgabe |  | Tietze-Transfomation Typ II. Sei y [mm] \not\in X^{\pm} [/mm] ein neuer Buchstabe und sei w ein beliebiges Element von F (X).  (F (X) ist die freie Gruppe mit der Basis X). Dann gibt es eine Transformation [mm] \langle [/mm] X [mm] \mid [/mm] R [mm] \rangle \to \langle X\cup [/mm] {y} [mm] \mid \{y^{-1}w\}\rangle. [/mm] Die letzte Präsentation ist ebenfalls eine Präsentation der Gruppe G. Wir zeigen, dass diese Präsentation aus dem Epimorphismus [mm] \overset {\varphi}^{'} [/mm] (x) = [mm] \varphi [/mm] (x) für alle x [mm] \in [/mm] X entsteht und [mm] \overset {\varphi}^{'} [/mm] (y) = [mm] \varphi [/mm] (w). Bezeichne mit N den normalen Abschluss der Menge R [mm] \cup \{y^{-1}w\} [/mm] in der Gruppe F (X [mm] \cup [/mm] {y}). Klarerweise ist N  [mm] \subseteq [/mm] ker [mm] \overset {\varphi}^{'}Wir [/mm] beweisen die umgekehrte Inklusion. Sei g ein beliebiges Element im Ker [mm] \overset {\varphi}^{'} [/mm] . Durch Bemerkung 5.2. wissen wir, dass [mm] uy^{\pm 1}v \in [/mm] N wenn und nur wenn [mm] uw^{\pm 1}v \in [/mm] N. Deshalb können wir annehmen, dass g die Buchstaben y und [mm] y^{-1} [/mm] nicht enthält. Dann ist g [mm] \in [/mm] ker [mm] \overset {\varphi}^{'} \subseteq [/mm] N.
 
 Bemerkung 5.2. besagt: Wenn r [mm] \in R^{F}, [/mm] dann gilt: urv [mm] \in R^{F} \Leftrightarrow [/mm] uv [mm] \in R^{F}. [/mm]
 [mm] R^{F} [/mm] bezeichnet im Übrigen den von R erzeugten Normalteiler, also den kleinsten NT von F, der R enthält.
 | 
 Hallo!
 
 Ich verstehe den Beweis leider nicht ganz. Mir ist der zweite Teil nicht klar, also ab: Durch Bemerkung 5.2 wissen wir....
 
 Wir nehmen ein beliebiges Element g aus dem Kern und wollen zeigen, dass dieses dann schon in N liegt. Wieso können wir das mithilfe von 5. 2 folgern?  Und wieso enthält g die Buchstaben y und [mm] y^{-1} [/mm] nicht? Weil w nicht in N liegt? Wenn das stimmt, wieso liegt es nicht in N? W war ja ein beliebiges Element aus F (X), deshalb könnte es ja auch in N  liegen....
 
 Hmm.. Kann mir hier jemand helfen?
 
 Lg und vielen Dank!
 Julia
 
 
 
 
 |  |  |  | 
 
  |  |  
  | 
    
     |  | Status: | (Mitteilung) Reaktion unnötig   |   | Datum: | 16:33 Mo 15.06.2009 |   | Autor: | BieneJulia | 
 Was ich gerade gedacht hab, war Müll, muss ja noch zeigen, dass der Kern von [mm] \overset {\varphi} [/mm] {'} in N enthalten ist, also kann ich das ja nicht voraussetzen....
 
 Ach Mensch, das ist bestimmt nicht so schwer und ich werd grad verrückt , weil ich das nicht hinbekomm....
 
 
 
 |  |  | 
 |  | 
 
  |  |  
  | 
    
     |  | Status: | (Mitteilung) Reaktion unnötig   |   | Datum: | 13:21 Do 18.06.2009 |   | Autor: | matux | 
 $MATUXTEXT(ueberfaellige_frage)
 
 |  |  | 
 
 
 |