matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteTextaufgabe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Skalarprodukte" - Textaufgabe
Textaufgabe < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Textaufgabe: Tipp/Korrektur
Status: (Frage) beantwortet Status 
Datum: 09:08 Do 26.01.2012
Autor: al3pou

Aufgabe
(a) Die Kraft [mm] \overrightarrow{F} [/mm] = (-10, 2, [mm] 5)^{T} [/mm] verschiebt eine Masse vom Punkt A = (1, -5, 3) in
    den Punkt B = (0, 1, 4). Welche Arbeit wird verrichtet?
(b) Ein Körper ist im Punkt [mm] P_{1} [/mm] = (1, 1, 1) drehbar angebracht. Im Punkt [mm] P_{2} [/mm] = (5, -1, -2) greift
    eine Kraft [mm] \overrightarrow{F} [/mm] mit [mm] \parallel [/mm] F [mm] \parallel [/mm] = 100 an, die in der [mm] x_{1}x_{3}-Ebene [/mm]    
    liegt. Berechnen Sie, welche Komponenten [mm] \overrightarrow{F} [/mm] haben muss, damit ein maximales
    Drehmoment hervorgerufen wird.
(c) Gegeben sei die Kraft [mm] \overrightarrow{F} [/mm] = (3, -2, [mm] 2)^{T}. [/mm] Welchen Winkel schließt die Richtung
    der Kraft [mm] \overrightarrow{F} [/mm] mit den positiven Richtungen der [mm] x_{1}-,x_{2}- [/mm] und [mm] x_{3}-Achse [/mm] ein?
    bestimmen Sie ferner die Norm der Kraft [mm] \overrightarrow{F} [/mm] und die Norm der orthogonalen
    Projektion von [mm] \overrightarrow{F} [/mm] in (positive) [mm] x_{1}-,x_{2}- [/mm] und [mm] x_{3}-Richtung. [/mm]

Hallo, ich wollte wissen, ob es so korrekt ist, wie ich es gemacht habe oder ob es
Verbesserungsvorschläge gibt.

zu (a):

Ich habe zunächst den Ursprung in den punkt A verlegt und erhalte dann [mm] B_{1} [/mm] = (-1, 6, 1)
Anschließend habe ich das Skalarprodukt der Kraft und des neuen Punktes [mm] B_{1} [/mm] berechnet, da die
Arbeit(A) als Kraft*Weg definiert ist und ich quasi drei Wege habe.

   A = [mm] A_{1} [/mm] + [mm] A_{2} [/mm] + [mm] A_{3} [/mm] = [mm] (F_{1}*B_{1})+(F_{2}*B_{2})+(F_{3}*B_{3}) [/mm]
     = 27 (was für eine Einheit würde ich da hinschreiben?)

zu (b):

Zunächst berechne ich den Hebelarm

  
   [mm] P_{2} [/mm] - [mm] P_{1} [/mm] = [mm] \vektor{4 \\ -2 \\ -3} [/mm] = [mm] \overrightarrow{H} [/mm]

Das Drehmoment wird maximal, wenn Kraft und Hebelarm senkrecht aufeinander stehen. Also

   [mm] \vec{H}*\vec{F} [/mm] = 0

Da [mm] \vec{F} [/mm] in der [mm] x_{1}x_{3}-Ebene [/mm] liegt, ist [mm] F_{2} [/mm] = 0. Dann folgt daraus:

   [mm] 4F_{1} [/mm] + (-2*0) + (-3 * [mm] F_{3}) [/mm] = 0
[mm] \gdw 4F_{1} [/mm] = [mm] 3F_{3} [/mm]   wähle [mm] F_{1} [/mm] = 3
[mm] \gdw F_{3} [/mm]  = 4

Die Kraft [mm] \vec{F} [/mm] müsste also folgende Komponenten besitzen [mm] \vektor{3 \\ 0 \\ 4} [/mm] bzw. ein Vielfaches
davon, also [mm] t*\vec{F}. [/mm]

zu (c):

Hier habe ich jetzt nicht wirklich Lust die Rechnung detailliert zu schreiben. Ich würde drei
Vektoren aufstellen, welche die Achsen beschreiben. Anschließend immer Winkel zw. einer der Achsen
und der Kraft berechnen.
Für die Norm würde ich den dreidimensionalen Pythagoras benutzen [mm] \wurzel{(F_{1})^{2} + (F_{2})^{2} + (F_{3})^{2}}. [/mm]
Lediglich bei der orthogonalen Projektion bin ich mir nicht sicher. Hier würde ich einfach sagen,
dass die entsprechenden Komponenten des Vektors die jeweiligen Projektionen in die positiven
Richtungen der Achsen sind, wobei es keine für die [mm] x_{2}-Achse [/mm] gibt.

Gruß
al3pou

        
Bezug
Textaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:26 Do 26.01.2012
Autor: meili

Hallo al3pou,

> (a) Die Kraft [mm]\overrightarrow{F}[/mm] = (-10, 2, [mm]5)^{T}[/mm]
> verschiebt eine Masse vom Punkt A = (1, -5, 3) in
>      den Punkt B = (0, 1, 4). Welche Arbeit wird
> verrichtet?
>  (b) Ein Körper ist im Punkt [mm]P_{1}[/mm] = (1, 1, 1) drehbar
> angebracht. Im Punkt [mm]P_{2}[/mm] = (5, -1, -2) greift
> eine Kraft [mm]\overrightarrow{F}[/mm] mit [mm]\parallel[/mm] F [mm]\parallel[/mm] =
> 100 an, die in der [mm]x_{1}x_{3}-Ebene[/mm]    
> liegt. Berechnen Sie, welche Komponenten [mm]\overrightarrow{F}[/mm]
> haben muss, damit ein maximales
> Drehmoment hervorgerufen wird.
>  (c) Gegeben sei die Kraft [mm]\overrightarrow{F}[/mm] = (3, -2,
> [mm]2)^{T}.[/mm] Welchen Winkel schließt die Richtung
> der Kraft [mm]\overrightarrow{F}[/mm] mit den positiven Richtungen
> der [mm]x_{1}-,x_{2}-[/mm] und [mm]x_{3}-Achse[/mm] ein?
> bestimmen Sie ferner die Norm der Kraft [mm]\overrightarrow{F}[/mm]
> und die Norm der orthogonalen
> Projektion von [mm]\overrightarrow{F}[/mm] in (positive)
> [mm]x_{1}-,x_{2}-[/mm] und [mm]x_{3}-Richtung.[/mm]
>  Hallo, ich wollte wissen, ob es so korrekt ist, wie ich es
> gemacht habe oder ob es
> Verbesserungsvorschläge gibt.
>  
> zu (a):
>  
> Ich habe zunächst den Ursprung in den punkt A verlegt und
> erhalte dann [mm]B_{1}[/mm] = (-1, 6, 1)
>  Anschließend habe ich das Skalarprodukt der Kraft und des
> neuen Punktes [mm]B_{1}[/mm] berechnet, da die
>  Arbeit(A) als Kraft*Weg definiert ist und ich quasi drei
> Wege habe.
>  
> A = [mm]A_{1}[/mm] + [mm]A_{2}[/mm] + [mm]A_{3}[/mm] =
> [mm](F_{1}*B_{1})+(F_{2}*B_{2})+(F_{3}*B_{3})[/mm]
>       = 27 (was für eine Einheit würde ich da
> hinschreiben?)

[ok]
Na eine Einheit für Arbeit.
Wenn die Einheiten der Achsen deines Koordinatensystem z.B.  m (Meter)
sind, und die Kraft(komponenten) in N (Newton) angegeben sind,
Nm.

>  
> zu (b):
>  
> Zunächst berechne ich den Hebelarm
>  
>
> [mm]P_{2}[/mm] - [mm]P_{1}[/mm] = [mm]\vektor{4 \\ -2 \\ -3}[/mm] =
> [mm]\overrightarrow{H}[/mm]
>  
> Das Drehmoment wird maximal, wenn Kraft und Hebelarm
> senkrecht aufeinander stehen. Also
>  
> [mm]\vec{H}*\vec{F}[/mm] = 0
>  
> Da [mm]\vec{F}[/mm] in der [mm]x_{1}x_{3}-Ebene[/mm] liegt, ist [mm]F_{2}[/mm] = 0.
> Dann folgt daraus:
>  
> [mm]4F_{1}[/mm] + (-2*0) + (-3 * [mm]F_{3})[/mm] = 0
>   [mm]\gdw 4F_{1}[/mm] = [mm]3F_{3}[/mm]   wähle [mm]F_{1}[/mm] = 3
>   [mm]\gdw F_{3}[/mm]  = 4
>  
> Die Kraft [mm]\vec{F}[/mm] müsste also folgende Komponenten
> besitzen [mm]\vektor{3 \\ 0 \\ 4}[/mm] bzw. ein Vielfaches
> davon, also [mm]t*\vec{F}.[/mm]

[ok]
Es ist aber noch [mm]\parallel[/mm] F [mm]\parallel[/mm] = 100 gegeben.
Daraus kann man die Komponenten von [mm]\vec{F}.[/mm] berechnen.

[mm]\vektor{3 \\ 0 \\ 4}[/mm]  ist nicht ok.

>  
> zu (c):
>  
> Hier habe ich jetzt nicht wirklich Lust die Rechnung
> detailliert zu schreiben. Ich würde drei
> Vektoren aufstellen, welche die Achsen beschreiben.
> Anschließend immer Winkel zw. einer der Achsen
> und der Kraft berechnen.
>  Für die Norm würde ich den dreidimensionalen Pythagoras
> benutzen [mm]\wurzel{(F_{1})^{2} + (F_{2})^{2} + (F_{3})^{2}}.[/mm]

[ok]

>  
> Lediglich bei der orthogonalen Projektion bin ich mir nicht
> sicher. Hier würde ich einfach sagen,
> dass die entsprechenden Komponenten des Vektors die
> jeweiligen Projektionen in die positiven
> Richtungen der Achsen sind, wobei es keine für die
> [mm]x_{2}-Achse[/mm] gibt.

?

>  
> Gruß
>  al3pou

Gruß
meili

Bezug
                
Bezug
Textaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 Do 26.01.2012
Autor: al3pou

Okay, also hab die Komponenten von [mm] \vec{F} [/mm] nochmal neu ermittelt und komme dann auf

  
   [mm] \vektor{60 \\ 0 \\ 80} [/mm]


Was ist denn die orthogonale Projektion? Ich dachte das wäre einfach von der Spitze des Vektors auf die
Ebene, die von zwei Achsen aufgespannt wird und dann müsste ich ja nur die Länge vom Punkt bis zu einer
Achse messen und das ist dann meine Projektion bzw es ist selbst ein Vektor parallel zur Achse und
davon nehme ich dann die Norm, wobei es doch einfach die jeweilige Komponente des Vektors ist. Also x,y oder z bzw [mm] x_{1},x_{2} [/mm] oder [mm] x_{3}. [/mm]

Gruß
al3pou

Bezug
                        
Bezug
Textaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Do 26.01.2012
Autor: leduart

Hallo
noch zu a)
du schreibst besser Differenzvektor [mm] \vec{AB} [/mm] statt verschieben von A in den Nullpunkt, Die Rechnung bleibt dieselbe.

die orthogonale projektion ist einfach die Komponente in der gegebenen richtung, also das Skalarprodukt mit dem Einheitsvektor der Richtung, in diese, fall also wirklich einfach die Komponenten von F.
Formal also [mm] F*(1,0,0)^T [/mm] für die Projektion in x1 Richtung.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]