matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteTetraeder
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Skalarprodukte" - Tetraeder
Tetraeder < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tetraeder: Tipp/Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:25 Mi 08.02.2012
Autor: al3pou

Aufgabe
Drei Vektoren im [mm] \IR^{3}, [/mm] die nicht in einer Ebene liegen,
definieren einen Tetraeder. Zeigen Sie: Wird jeder der vier
Tetraederflächen ein "nach außen" zeigender Normalenvektor
zugeordnet, dessen Länge dem jeweiligen Flächeninhalt
entspricht, so verschwindet die Summe dieser 4 Vektoren.

Hallo,

also bei der Aufgabe habe ich erstmal die drei Vektoren

   [mm] \vec{a}, \vec{b} [/mm] und [mm] \vec{c} [/mm]

diese sind lin. unab.. Jetzt berechne ich dreimal das
Kreuzprodukt, weil ich ja die Normalenvektoren zu den vier
Flächen brauche. Dreimal, weil ich nicht weiß wie ich auf
die vierte Seite kommen soll. Die drei Vektoren sind die
drei Kanten des Tetraeders. Nachdem ich Das Kreuzprodukt
berechnet habe, würde ich von jedem der entstandenen
Normalenvektoren den Betrag nehmen und den = dem
Flächeninhalt der Fläche setzen. So und jetzt weiß ich
nicht wie ich auf den Vektor für die Grundfläche komme oder
wie ich weiter machen soll oder ob mein Ansatz überhaupt
richtig ist.

Gruß
al3pou

        
Bezug
Tetraeder: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Mi 08.02.2012
Autor: Diophant

Hallo,

die Aufgabe ist viel einfacher, als sie aussieht. Drücke die drei restlichen Tetraederkanten als Linearkombinationen von a, b und c aus und beachte die wichtige Eigenschaft des Kreuzproduktes, dass nämlich die drei Vektoren

[mm] \overline{a},\overline{b} [/mm] und [mm] \overline{a}\times\overline{b} [/mm]

in dieser Reihenfolge ein Rechtssystem bilden.

Weiterhin ist ja - algebraisch gesehen - das Kreuzprodukt ein Biest, aber wenistens assoziativ. :-)

Wenn du all dies berücksichtigst, dann müsste die Summe der vier Normalenvektoren ganz einfach der Nullvektor sein.

Gruß, Diophant

Bezug
                
Bezug
Tetraeder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Do 09.02.2012
Autor: al3pou

Okay, ich habe jetzt eine Seite der Grundfläche als
Linearkombination von [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] ausgedrückt. Jetzt
verstehe ich aber deinen Hinweis mit dem Rechtssystem nicht.
Und ich würde doch trotzdem eine Gleichung aufstellen, wo ich
jeweils einen der Normalenvektoren mit dem Flächeninhalt der
entsprechenden Seite gleichsetze oder?

Gruß
al3pou

Bezug
                        
Bezug
Tetraeder: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 Do 09.02.2012
Autor: Diophant

Hallo,

vergiss die Flächen: wenn du einen Normalenvektor einer dreieckigen Fläche per Kreuzprodukt zweier Seitenvektoren berechnest, so entspricht sein Betrag der doppelten Fläche. Du kannst getrost mit dieser doppelten Fläche rechnen, weil du den Faktor 2 eh aus der Summe herausziehen kannst, und diese Summe soll ja Null werden.

Das mit dem Rechtssystem ist deshalb wichtig, weil du sicherstellen musst, dass entweder alle Normalenvektoren aus dem Tetraeder herauszeigen, oder alle in ihn hinein, aber eben nicht beliebig.

[]Rechtssystem kann man googeln.

> Okay, ich habe jetzt eine Seite der Grundfläche als
> Linearkombination von [mm]\vec{a}[/mm] und [mm]\vec{b}[/mm] ausgedrückt.

Ja, wenn du es geschickt machst, dann reicht dir eine dieser Seitenkanten aus.

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]