matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenTetraeder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Tetraeder
Tetraeder < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tetraeder: Berechnung der Eckpunkte
Status: (Frage) beantwortet Status 
Datum: 16:43 Mi 19.09.2007
Autor: Tonilein

Aufgabe
Die Schwerpunkte der Dreiecke, die ein Tetraeder begrenzen, sind:
Sd(3/3/0), Sa (3/3/6), Sb(-1/3/6) und Sc (4/0/6).
Berechne die Ecken A, B, C und D.

Hey Leute..könnt ihr mir bei der Berechnung dieser Aufgabe helfen?....Vielen Dank im Voraus.

        
Bezug
Tetraeder: Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 Mi 19.09.2007
Autor: Somebody


> Die Schwerpunkte der Dreiecke, die ein Tetraeder begrenzen,
> sind:
>  Sd(3/3/0), Sa (3/3/6), Sb(-1/3/6) und Sc (4/0/6).
>  Berechne die Ecken A, B, C und D.
>  Hey Leute..könnt ihr mir bei der Berechnung dieser Aufgabe
> helfen?

Es genügt, die vier Ortsvektoren [mm] $\vec{OA}$, $\vec{OB}$, $\vec{OC}$ [/mm] und [mm] $\vec{OD}$ [/mm] zu bestimmen.
Zu diesem Zweck verwendest Du mit Vorteil folgendes Vorwissen: Der Ortsvektor eines Dreiecks ist das arithmetische Mittel der Ortsvektoren seiner Eckpunkte.
Dies ergibt die folgenden vier Gleichungen:
[mm]\begin{array}{rcl} \vec{OS}_d &=& \frac{1}{3}\big(\vec{OA}+\vec{OB}+\vec{OC}\big)\\ \vec{OS}_a &=& \frac{1}{3}\big(\vec{OB}+\vec{OC}+\vec{OD}\big)\\ \vec{OS}_b &=& \frac{1}{3}\big(\vec{OA}+\vec{OC}+\vec{OD}\big)\\ \vec{OS}_c &=& \frac{1}{3}\big(\vec{OA}+\vec{OB}+\vec{OD}\big) \end{array}[/mm]

Dieses Gleichungssystem versuchst Du nun nach den Ortsvektoren der gesuchten Eckpunkte $A,B,C,D$ aufzulösen.

Bezug
                
Bezug
Tetraeder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 Mi 19.09.2007
Autor: Tonilein

tut mir leid, aber diese Variante kann ich absolut nicht nachvollziehen. Mit Ortsvektoren haben wir noch garnet gerechnet und ich verstehe auch nicht woher ich wissen soll, was OA usw sein soll...ich hab ja immer nur die schwerpunkte gegeben...deswegen ist es alles ein wenig verwirrend..sorry....

Bezug
                        
Bezug
Tetraeder: Antwort
Status: (Antwort) fertig Status 
Datum: 22:26 Mi 19.09.2007
Autor: Zwerglein

Hi, Tonilein,

> tut mir leid, aber diese Variante kann ich absolut nicht
> nachvollziehen. Mit Ortsvektoren haben wir noch garnet
> gerechnet und ich verstehe auch nicht woher ich wissen
> soll, was OA usw sein soll...ich hab ja immer nur die
> schwerpunkte gegeben...deswegen ist es alles ein wenig
> verwirrend..sorry....

Aber da Du die Frage im Bereich "Vektoren" eingegeben hast, weist Du zumindest, was Vektoren sind, oder?

Nun, Du kannst bei Somebodys Anwort die O auch weglassen.
Dann gilt z.B.:
[mm] \vektor{3 \\ 3 \\ 0} [/mm] = [mm] \bruch{1}{3}*(\vec{a} [/mm] + [mm] \vec{b} [/mm] + [mm] \vec{c}) [/mm]
usw. (siehe wieder Somebodys Antwort).

Daraus kannst Du durch entsprechende Umformung (Additionsverfahren, Einsetzverfahren)

[mm] \vec{a}, \vec{b}, \vec{c} [/mm] und [mm] \vec{d} [/mm] berechnen, was gleichbedeutend mit der Berechnung der Koordinaten von A, B, C und D ist.

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]