Testaufgabe < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 19:50 So 07.02.2010 | Autor: | elba |
Aufgabe | Eine Münze mit Parameter p werde 3 Mal geworfen.
(i) Geben Sie einen nicht randomisierten Neyman-Pearson Test für
H:p= [mm] \bruch{1}{3} [/mm] gegen K: [mm] p<\bruch{1}{3} [/mm] auf dem Niveau [mm] \alpha= \bruch{1}{3} [/mm] an.
(ii) Geben Sei einen randomisierten Neyman-Pearson Test für das gleiche Testproblem an.
(iii) Gibt es einen nicht-randomisierten Test für das Testproblem, der das Niveau [mm] \bruch{1}{3} [/mm] einhält, aber eine größere Güte hat als der Test in (i)? |
also ich habe auch die Lösungen für die Aufgabe. Allerdings hab ich dazu ein paar Fragen.
X: Anzahl der Würfe einer Münzseite. n=3, [mm] p=\bruch{1}{3}.
[/mm]
[mm] \IP[{X=\gamma}]\le \bruch{1}{3} \IP[{X=0}]=\vektor{3\\0} \bruch{1}{3} [/mm] ^{0} [mm] \bruch{2}{3}^3 [/mm] = [mm] \bruch{8}{27}
[/mm]
[mm] \IP_{\bruch{1}{3}} [{X=1}]=\vektor{3\\1} \bruch{1}{3}^1 \bruch{2}{3}^2 =\bruch{4}{9}
[/mm]
[mm] \gamma=0 \Rightarrow [/mm] Ablehnungsbereich K={0}
Annahmebereich K={1,2,3}
[mm] \gamma(x)=0 [/mm] für [mm] x\ge [/mm] 1
[mm] \gamma(x)=1 [/mm] für x=0
So, das ist die Lösung für den ersten Teil.
Muss man für X=0 testen, da für [mm] H:p=\bruch{1}{3} [/mm] mindestens einmal Kopf geworfen werden muss, damit die Münze als fair gilt??
Muss dann die W'keit immer größer als [mm] \alpha [/mm] sein, damit man die Hypothese annimmt und nicht verwirft??
Und vielleicht könnte mir jemand auch nochmal erklären, was genau randomisiert bedeutet!!
Danke schonmal, falls mir da jemand helfen kann :)
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:20 Di 09.02.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|