matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesTensorprodukt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Tensorprodukt
Tensorprodukt < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tensorprodukt: Ansatz
Status: (Frage) überfällig Status 
Datum: 11:59 Mo 26.07.2010
Autor: schneckennudel91

Aufgabe
Sei K ein Körper und n und m natürliche Zahlen. Zeigen Sie, dass es einen eindeutigen Homomorphismus [mm] \nu [/mm] : [mm] K^n \otimes K^m \to M_{nxm}(K) [/mm]  : x [mm] \otimes [/mm] y [mm] \mapsto xy^t [/mm] gibt.
Zeigen Sie, dass [mm] \nu [/mm] ein Isomorphismus ist.

Ich komme irgendwie nicht auf den richtigen Ansatz.
Vor allem beschäftigt mich die Frage, wie ich die Existenz dieses Homomorphismus zeigen soll.
Was muss ich zur Eindeutigkeit zeigen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


edit: Wir haben das Tensorprodukt über die Universelle Eigenschaft definiert, aber ich weiß nicht, wie ich die Existenz zeigen soll. Denn dazu sagt mir die universelle Eigenschaft ja gar nichts.

        
Bezug
Tensorprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 Mo 26.07.2010
Autor: statler

Mahlzeit!

> Sei K ein Körper und n und m natürliche Zahlen. Zeigen
> Sie, dass es einen eindeutigen Homomorphismus [mm]\nu[/mm] : [mm]K^n \otimes K^m \to M_{nxm}(K)[/mm]
>  : x [mm]\otimes[/mm] y [mm]\mapsto xy^t[/mm] gibt.
> Zeigen Sie, dass [mm]\nu[/mm] ein Isomorphismus ist.
>  Ich komme irgendwie nicht auf den richtigen Ansatz.
> Vor allem beschäftigt mich die Frage, wie ich die Existenz
> dieses Homomorphimus zeigen soll.
> Was muss ich zur Eindeutigkeit zeigen?

Wenn ihr das Tensor-Produkt über seine universelle Eigenschaft definiert habt, ist das auch genau der richtige Ansatz.

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Tensorprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:54 Mo 26.07.2010
Autor: felixf

Moin zusammen,

> Mahlzeit!
>  
> > Sei K ein Körper und n und m natürliche Zahlen. Zeigen
> > Sie, dass es einen eindeutigen Homomorphismus [mm]\nu[/mm] : [mm]K^n \otimes K^m \to M_{nxm}(K)[/mm]
> >  : x [mm]\otimes[/mm] y [mm]\mapsto xy^t[/mm] gibt.

> > Zeigen Sie, dass [mm]\nu[/mm] ein Isomorphismus ist.
>  >  Ich komme irgendwie nicht auf den richtigen Ansatz.
> > Vor allem beschäftigt mich die Frage, wie ich die Existenz
> > dieses Homomorphimus zeigen soll.
> > Was muss ich zur Eindeutigkeit zeigen?
>  
> Wenn ihr das Tensor-Produkt über seine universelle
> Eigenschaft definiert habt, ist das auch genau der richtige
> Ansatz.

genau. Auch der erste Teil der Aufgabe -- die Existenz -- haengt stark davon ab, wie das Tensorprodukt definiert wurde und ob die universelle Eigenschaft bekannt ist.

Liebe(r) schneckennudel91, du musst uns also etwas mehr erzaehlen, bevor wir dir helfen koennen :)

LG Felix



Bezug
        
Bezug
Tensorprodukt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mo 02.08.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]