matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikTemp. Abhängigkeit Widerstand
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Physik" - Temp. Abhängigkeit Widerstand
Temp. Abhängigkeit Widerstand < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Temp. Abhängigkeit Widerstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:09 Fr 06.01.2012
Autor: Vertax

Aufgabe
Gegeben : [mm]\alpha = 3,85 * 10^{-3}K^-1[/mm]
[mm]T = 100°C[/mm] => [mm]R=138,5\Omega[/mm]

Gesucht:
R bei T = 0°C



Hallo Community,
ich habe ein kleines Problem bei der Umstellung einer Formel.

Die Formel für die Temperaturabhängigkeit eines Widerstandes ist ja:

[mm]\alpha = \bruch{\Delta R}{R*\Delta T}[/mm]

So, [mm]\Delta R[/mm] ist ja nicht anderes als
[mm] R_0 [/mm] - [mm] R_1 [/mm]

Deshalb wollte ich so Rechnen:

[mm]\alpha = \bruch{\Delta R}{R*\Delta T}[/mm]| [mm]*R*\Delta T [/mm]

Dann hätte ich ja:

[mm]\alpha *R*\Delta T = \Delta R[/mm]

Da [mm]\Delta R[/mm] [mm] =>R_0 [/mm] - [mm] R_1 [/mm]

[mm]\alpha *R*\Delta T = R_0-R_1[/mm]   [mm] |+R_1 [/mm]
[mm]\alpha *R*\Delta T +R_1 = R_0[/mm]

Diese Formel ist aber leider nicht richtig. Sonder:

[mm] R_0 [/mm] = [mm] \bruch{R}{1+\alpha*\Delta T} [/mm]

Doch wie komme ich darauf? Würde gerne das Umformen der Formel Verstehen und nicht nur einfach in die Formelsammlung übernehmen.

gruß
Vertax

        
Bezug
Temp. Abhängigkeit Widerstand: Anfangs-und Endwert
Status: (Antwort) fertig Status 
Datum: 12:40 Fr 06.01.2012
Autor: Infinit

Hallo Vertax,
du hast den falschen Widerstand erwischt:
[mm] \alpha R_1 \Delta T = R_0 - R_1 [/mm] oder auch
[mm] R_1 (1+\alpha \Delta T ) = R_0 [/mm]
Hieraus ergibt sich sofort Deine Gleichung.
Viele Grüße,
Infinit


Bezug
                
Bezug
Temp. Abhängigkeit Widerstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 Fr 06.01.2012
Autor: Vertax

Hi, das ist doch eigentlich die selbe Formel wie ich Sie vorher aufgeschrieben habe mit dem unterschied das ich links bei [mm] R_1 [/mm] den Index vergessen habe oder?

[mm]\alpha R_1 \Delta T = R_0 - R_1[/mm] <- Deine Version

[mm]\alpha R \Delta T = R_0 - R_1[/mm] <- Meine Version

So was ich jetzt aber immer noch net kapiert hab ist wieso das nicht funktioniert:
[mm]\alpha R_1 \Delta T = R_0 - R_1[/mm] | [mm] +R_1 [/mm]
[mm]\alpha R_1 \Delta T +R_1 = R_0[/mm]

Weil diese Formel müsste mir doch genau so [mm] R_0 [/mm] als Ergebnis
liefern wie: [mm] R_0=\bruch{R_1}{1+\alpha+\Delta T} [/mm]


Bezug
                        
Bezug
Temp. Abhängigkeit Widerstand: Temperatur
Status: (Antwort) fertig Status 
Datum: 15:25 Fr 06.01.2012
Autor: Infinit

Hi,
wir sind uns doch einig, dass R0 der Endwiderstand ist. Deine letzte Umformung zum Bruch funktioniert so aber nicht. Die Temperaturdifferenz ist ist in Deinem Falle negativ, da Du von 100 Grad auf 0 Grad abkühlst.
Etwas übersichtlicher aus meiner Sicht ist die folgende Gleichung mit den entsprechenden Indizes für Anfangs- und Endwerte:
[mm] R_{End} = R_{Anf}(1+\alpha (T_{End}-T_{Anf}))[/mm]
Viele Grüße,
Infinit


Bezug
                                
Bezug
Temp. Abhängigkeit Widerstand: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Fr 06.01.2012
Autor: Vertax

Hi, aber ich bekomme zwei unterschiedliche Ergebnisse raus.
Das verwirrt mich total.

[mm]R_{End} = R_{Anf}(1+\alpha (T_{End}-T_{Anf}))[/mm]

So das ist die Formel, nun setze ich die Werte ein:

[mm]R_{End} = 138,5\Omega*(1+3,85*10^{-3}* (273.15K-373.15K))[/mm] = 85.1775 [mm] \Omega [/mm]

So das Ergebnis ist aber Falsch, richtig wäre laut vorgegebener Lösung:

[mm] R_0=\bruch{R}{1+\alpha\cdot{}\Delta T} [/mm]

[mm] R_0=\bruch{138,5\Omega}{1+3,85*10^{-3}\cdot{}(373.15K-273.15K)}= 100\Omega [/mm]

Das check ich total nicht, vor allem weil wir noch eine zweiten Teil der Aufgabe haben. Nur mit einem anderen Koeffizienten für [mm] \alpha. [/mm]

Mit [mm] \alpha [/mm] = [mm] -5.3*10^{-4} [/mm] führen mich beide Formeln nämlich zum richtigen Ergebnis.

Bezug
                                        
Bezug
Temp. Abhängigkeit Widerstand: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Fr 06.01.2012
Autor: leduart

Hallo
bei dem Temperaturkoeffizienten geht man immer von einer ausgangstemp meist 0°C oder 20°C aus. Damit gilt
[mm] R(T)=R(T_0)*(1+\alpha*(T-T_0)) [/mm]
damit dann deine formel [mm] R(T_0)=R(T)/(1+\alpha*(T-T_0)) [/mm]
für euer /alpha >0 hast du also offensichtlich einen positiven Temperaturkoeffizienten und die Bezugstemperatur ist T_==0°C
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]