matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraTeilraum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Teilraum
Teilraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilraum: Mengen
Status: (Frage) beantwortet Status 
Datum: 22:44 Do 17.08.2006
Autor: hooover

Aufgabe
Sei [mm] $Abb.(\IR,\IR)$die [/mm] Menge der Funktionen [mm] \IR\to\IR. [/mm] Für f,g [mm] \in $Abb.(\IR,\IR)$ [/mm] und [mm] \lambda \varepsilon \IR [/mm] definieren wir die Addition und die skalare Multiplikation durch

$(f+g)(x):= f(x) + g(x)    für [mm] \in\IR\$ [/mm]

[mm] $(\lambda*f) [/mm] := [mm] \lambda [/mm] * f(x)   für [mm] \varepsilon \IR$ [/mm]


Weiter bezeichne

$G:= [mm] \{f \in \mathrm{Abb}(\IR,\IR)|f(-x)= f(x) \text{ für alle } x \in \IR\}$ [/mm]

$U:= [mm] \{f \in \mathrm{Abb}(\IR,\IR)|f(-x)=-f(x) \text{ für alle } x \in \IR\}$ [/mm]

die Menge der geraden bzw. ungeraden Funktionen auf [mm] \IR [/mm]

a) Ist [mm] $G\cup [/mm] U$ ein Teilraum von [mm] {Abb}(\IR,\IR)? [/mm]

b) Ist [mm] $G\cap [/mm] U$ ein Teilraum von [mm] {Abb}(\IR,\IR)? [/mm]

c) Zeigen sie, dass jedes Element in [mm] f\in{Abb.}(\IR,\IR), [/mm] geschrieben werden kann als f=g+u mit g [mm]\varepsilon[/mm] G und u [mm]\varepsilon[/mm] U

Hallo und schönen guten abend,

die aufgaben liegen mir nicht recht ich zeig euch mal meinen ansatz

zu d)

also wenn

[mm] g_{1}+g_{2} \in [/mm] G

[mm] \lambda [/mm] g            [mm] \in [/mm] G

[mm] u_{1}+u_{2} \in [/mm] U

[mm] \lambda [/mm] u            [mm] \in [/mm] G

(dass habe ich schon alles gezeigt)

gilt, dann ist G [mm] \cup [/mm] U

es muß aber noch ein Fall betrachtet werden

g+u [mm] \in [/mm] G [mm] \cup [/mm] U

aber wie mach ich das?

für b) und c) habe ich noch keine Idee

Danke für eure Hilfe Gruß hooover

        
Bezug
Teilraum: Antwort
Status: (Antwort) fertig Status 
Datum: 09:06 Fr 18.08.2006
Autor: Leopold_Gast

a)

[mm]G \cup U[/mm] ist gar kein Teilraum. Dazu genügt es, ein Gegenbeispiel anzugeben. Wie wäre es mit den Funktionen [mm]g,u,g+u[/mm] mit [mm]g(x) = x^2, \ u(x) = x[/mm] ?


b)

Wenn [mm]f \in G \cap U[/mm] ist, also sowohl gerade als auch ungerade ist und folglich [mm]f(-x) = f(x)[/mm] wie auch [mm]f(-x) = -f(x)[/mm], daher auch [mm]f(x) = -f(x)[/mm] erfüllt, was heißt das dann für [mm]f[/mm] ?


c)

Betrachte die Exponentialfunktion [mm]\exp[/mm] und die hyperbolischen Funktionen [mm]\cosh, \sinh[/mm]. [mm]\cosh[/mm] ist gerade, [mm]\sinh[/mm] ist ungerade, und [mm]\exp[/mm] weder das eine noch das andere. Es gilt jedoch [mm]\exp = \cosh + \sinh[/mm].
Versuche, das Konstruktionsprinzip, nach dem [mm]\cosh,\sinh[/mm] mittels [mm]\exp[/mm] definiert werden, auf beliebige Funktionen [mm]f[/mm] statt [mm]\exp[/mm] zu übertragen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]