Teilmengen und Abbildung < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:57 So 08.11.2009 | Autor: | Jim |
Also ich hab folgende Angabe.
f sei eine Abbildung von X nach Y. ich soll bei den folgenden aussagen wahr oder falsch ankreuzen
1 sind A, B teilmengen von X, so gilt A [mm] \cap [/mm] B [mm] \not=\emptyset [/mm] genau dann, wenn [mm] f(A)\cap f(B)\not=\emptyset [/mm] gilt . ( ich denke es ist wahr)
2. sind A, B Teilmengen von X und ist f surjektiv, so gilt [mm] A\capB\not=\emptyset [/mm] genau dann , wenn [mm] f(A)\capf(B)\not=\emptyset [/mm] gilt. ( auch wahr??)
3. Sind A,B Teilmengen von X mit [mm] A\subseteqB [/mm] , so gilt [mm] f(A)\subseteqf(B) [/mm] ( ich denke das ist wahr)
Ich habe diese Frage in keinem anderen Forum gestellt .
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:26 So 08.11.2009 | Autor: | Teufel |
Hi!
1. Betrachte mal [mm] f(x)=x^2, [/mm] A=[-1;0] und B=[0,5;1].
$ [mm] f(A)\cap f(B)\not=\emptyset [/mm] $, aber $A [mm] \cap B=\emptyset$.
[/mm]
Du musst also immer wirklich beide Richtungen zeigen, also einmal $A [mm] \cap [/mm] B [mm] \not= \emptyset \Rightarrow f(A)\cap f(B)\not=\emptyset$ [/mm] und [mm] $f(A)\cap f(B)\not=\emptyset \Rightarrow [/mm] A [mm] \cap B=\emptyset$.
[/mm]
Und wenn die Funktion nicht weiter eingeschränkt ist, probiere auch mal Funktionen aus, die z.B. surjektiv sind (so wie ich mit [mm] f(x)=x^2), [/mm] oder eventuell auch injektive, oder Funktionen, die nichts von beidem sind.
Daraufhin musst du Aufgabe 2) und 3) auch nochmals untersuchen (wobei 3. stimmt).
Teufel
|
|
|
|