matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieTeilmengen Integrieren, Gauss
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Teilmengen Integrieren, Gauss
Teilmengen Integrieren, Gauss < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilmengen Integrieren, Gauss: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:54 Sa 21.07.2007
Autor: Smada

Aufgabe
[mm]Sei\ T \subset R^{3}\ die\ Menge\ T=T_{1} \cup T_{2}\ mit [/mm]
[mm]T_{1} := \{(x,y,z) | 1 \le x^{2}+y^{2} \le\ 9\ und\ 0 \le z \le 3 - \wurzel {x^{2} + y^{2}} \}\ und [/mm]
[mm]T_{2} := \{(x,y,z) | x^{2}+y^{2} \le 1\ und\ 0 \le z \le 2 \} [/mm]
Machen Sie eine Skizze dieser Menge T und berechnen Sie den dreidimensionalen Volumeninhalt.

Hinweis:
Beachten Sie, dass [mm]T_{1}\cap T_{2} [/mm] den dreidimensionalen Volumeninhalt 0 besitzt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Teilmenge 1 ist ein "dreieckiger Ring" der aussen an Teilmenge 2, dem Zylinder, anliegt, zusammengenommen also nichts weiter als ein Kegelstumpf, dessen Volumen man ja ohne größere Probleme über  [mm] V_{Stumpf}=V_{gesamt} - V_{abgeschnittene Spitze} [/mm] berechnen kann.

In der Musterlösung wurde nun aber nur der Zylinder über Grundfläche*Höhe berechnet, Teilmenge 1 wurde aber integriert.

Meine Frage lautet nun: Sind beide Verfahren exakt gleichwertig, oder darf ich das aus mathematischer Sicht nicht machen (wegen den Mengen oder sonstigen Gründen)?

Vielen Dank schon mal im Vorraus

        
Bezug
Teilmengen Integrieren, Gauss: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Mo 23.07.2007
Autor: generation...x

Die Frage wäre: Wie würdest du denn sonst das Volumen der abgeschnittenen Spitze berechnen wollen? Auch da müsstest du wohl integrieren (es sei denn, du hast dafür eine Formel gegeben, aber die bestimmt sich letzten Endes doch auch über ein Integral, oder?).

Bezug
        
Bezug
Teilmengen Integrieren, Gauss: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Mo 23.07.2007
Autor: leduart

Hallo
Mathematisch ist sicher gegen deine Methode nix einzuwenden. und sie ist gleichwertig!
Im Zweifelsfall müsstest du aber sagen, wieso deine formel für den Kegelstumpf richtig ist.
Aber ich denke dass Integrieren können ja eigentlich höhere mathe ist als Kegel zu berechnen!
Vielleicht sollt ihr nur das integrieren üben? dann ists gut, wenn dus auf die elementare Art überprüfen kannst.
Gruss leduart

Bezug
                
Bezug
Teilmengen Integrieren, Gauss: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Di 24.07.2007
Autor: Smada

Vielen Dank für die Antwort!
Alles in allem ist klar, dass wir integrieren lernen sollen, aber wenn es nicht explizit gefordert ist und man die Möglichkeit hat, das zu Umgehen und somit in der Klausur einiges an Zeit einsparen kann...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]