Teilmenge von R^n < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:24 Do 24.01.2013 | Autor: | jollo |
Aufgabe | Man gebe eine unendliche Teilmenge von [mm] \IR^n [/mm] an derart, dass je n ihrer Elemente linear unabhängig sind. |
Hallo,
Erstmal meine Idee: Für n=2: (1,2) (1,3) (1,4) (1,5)...(1,r)
Für n=3: (1,2,3) (1,4,5) (1,6,7)...(1,r-1,r)
Für n=4: (1,2,3,4) (1,5,6,7) (1,8,9,10).. (1,r-2,r-1,r)
...... usw.
Frage ist wie schreibe ich das richtig auf? stimmt das überhaupt? reicht so bestimmt noch nicht oder?
Freue mich auf Hilfestellungen.
Gruß
Jollo
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:07 Do 24.01.2013 | Autor: | Marcel |
Hallo,
> Man gebe eine unendliche Teilmenge von [mm]\IR^n[/mm]
meinst Du wirklich [mm] $\IR^n$? [/mm] Oder steht da [mm] $\IR^{\IN}$? [/mm] Aber es scheint
ja wirklich so, dass Du [mm] $\IR^n$ [/mm] meinst, wobei $n [mm] \in \IN$ [/mm] beliebig, aber
fest sein soll!
> an derart,
> dass je n ihrer Elemente linear unabhängig sind.
> Hallo,
>
> Erstmal meine Idee: Für n=2: (1,2) (1,3) (1,4)
> (1,5)...(1,r)
Du zählst die Elemente Deiner Menge auf - schreibe das ganze halt mit
Mengenklammern:
[mm] $$M_2:=\{(1,n): n \in \IN\}$$
[/mm]
ist doch Deine Menge. Die hört auch nicht bei [mm] $n=r\,$ [/mm] auf, sondern sie soll
ja unendlich sein, also unendlich viele Elemente enthalten. Beantworten
wir erstmal die Frage, ob die Idee hier schon stimmt:
Seien zwei Elemente aus [mm] $M_2$ [/mm] gegeben: [mm] $(1,p),\;(1,q) \in M_2$ [/mm] mit $p,q [mm] \in \IN\,$ [/mm] und $p [mm] \not=q\,.$
[/mm]
Was folgt denn, für $r,s [mm] \in \IR\,,$ [/mm] dann aus
[mm] $$r*(1,p)+s*(1,q)=(0,0)\,.$$
[/mm]
Du willst diese Gleichung ja in den Variablen [mm] $r,s\,$ [/mm] lösen, und zeigen,
dass die dann nur für [mm] $r=s=0\,$ [/mm] gelten kann. Dabei sind $p,q [mm] \in \IN$ [/mm] mit $p [mm] \not=q$ [/mm] als
"fest", also als Parameter, zu betrachten.
> Für n=3: (1,2,3) (1,4,5)
> (1,6,7)...(1,r-1,r)
> Für n=4: (1,2,3,4)
> (1,5,6,7) (1,8,9,10).. (1,r-2,r-1,r)
> ...... usw.
> Frage ist wie schreibe ich das richtig auf?
Wenn ich das richtig sehe - und wie gesagt, die Menge hört nicht
irgendwann auf, wenn sie unendlich sein soll - kannst Du das so schreiben:
[mm] $$M_n:=\{\;\;\underbrace{(1,2+p*(n-1),3+p*(n-1),...,n+p*(n-1))}_{{\in \IR}^n}\;:\;\;\;p \in \IN_0\}$$
[/mm]
> stimmt das überhaupt?
Das kann ich Dir - ehrlich gesagt - noch nicht sagen. Für [mm] $n=2\,$ [/mm] passt's
aber anscheinend schon einmal.
> reicht so bestimmt noch nicht oder?
Nein, denn die Frage, ob das so stimmt, musst Du Dir halt selbst beantworten:
Seien [mm] $v_1,...,v_n \in M_n$ [/mm] alle paarweise verschieden [mm] ($M_n$ [/mm] hatte ich ja
nun entsprechend Deiner Idee oben definiert). Dann gibt es ja
[mm] $p_1,...,p_n \in \IN_0$ [/mm] derart, dass
[mm] $$v_j=(1, 2+p_j*(n-1), [/mm] ..., [mm] n+p_j*(n-1))\,,$$
[/mm]
wobei die [mm] $p_j$ [/mm] alle paarweise verschieden sein müssen, weil die [mm] $v_j$ [/mm] dies
ja sind. Sind [mm] $r_1,...,r_n \in \IR\,,$ [/mm] so musst Du Dir halt die Lösungsmenge
der Gleichung
[mm] $$(\*)\;\;\;r_1*v_1+...+r_n*v_n=(0,0,...,0)$$
[/mm]
angucken (im [mm] "$n\,$-Tupel" $(r_1,...,r_n)$). [/mm] Wenn diese Lösungsmenge
[mm] $$=\{\;\underbrace{(0,...,0)}_{{\in \IR}^n}\;\}$$
[/mm]
ist, bist Du fertig.
(Die Lösungsmenge [mm] $\IL$ [/mm] von [mm] $(\*)$ [/mm] kann man notieren als
[mm] $$\IL=\{x=(x_1,...,x_n) \in \underbrace{\IR^n}_{{\text{eigentlich }\IR}^{1 \times n}}:\;\;\text{ Aus } r_i=x_i \text{ für alle }i \in \{1,...,n\} \text{ folgt: die Gleichung }(\*)\text{ ist erfüllt/wahr!}\}\,.$$
[/mm]
Beachte übrigens, dass ${(0,...,0)} [mm] \subseteq \IL$ [/mm] sicher gilt!)
Wenn Du nun schon [mm] $\IL=\{\;(0,...,0)\;\}$ [/mm] folgern kannst, bist Du fertig. Ansonsten
musst Du Dir halt was neues überlegen.
Gruß,
Marcel
|
|
|
|