matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieTeilbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Teilbarkeit
Teilbarkeit < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 So 09.06.2013
Autor: meister_quitte

Aufgabe
Beweisen Sie, aus [mm] $a^2+b^2=c^2$ [/mm] folgt 12|ab und 60|abc.

Hallo Freunde der Mathematik,

ich habe hier folgenden Ansatz und wollte wissen, ob dieser korrekt ist.

$12|ab [mm] \iff 12=q_1*ab$ [/mm] und
$60|abc [mm] \iff 60=q_2*abc$ [/mm]

Diese Gleichungen unterscheiden sich um den Faktor 5.

[mm] $\Rightarrow [/mm] c=5$
[mm] $\Rightarrow\forall k\in\IZ, \exists [/mm] k: [mm] k(3^2+4^2)=k*5^2$ [/mm]
[mm] $\Rightarrow 12|ab\wedge [/mm] 60|abc$

Vielen Dank schon mal für eure Hilfe.

Liebe Grüße

Christoph

        
Bezug
Teilbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 So 09.06.2013
Autor: leduart

Hallo
Dein Beweis stimmt nur für sehr spezielle pythagoreische Tripel, ist also nicht allgemeingültig
Gruß leduart

Bezug
                
Bezug
Teilbarkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:24 So 09.06.2013
Autor: meister_quitte

Hallo leduart,

ich schließe aus deiner Anmerkung, dass ich prüfen muss, ob es mehrere Tripel (a, b, 5) gibt.
Ok, die Formel lautet: [mm] $\forall u,v\in\IN:u>v$ [/mm] gilt: [mm] $a=u^2-v^2, [/mm] b=2uv, [mm] c=u^2+v^2$. [/mm]

Sei $c= [mm] 5=u^2+v^2\iff v^2=5-u^2\Rightarrow a=2u^2-5 \Rightarrow b=2\sqrt{5-v^2}*\sqrt{5-u^2}$ [/mm]

Also kommt folgendes Tripel heraus [mm] $(2u^2-5, 2\sqrt{5-v^2}*\sqrt{5-u^2}, [/mm] 5)$. Für u=2 und v=1 kommt (3, 4, 5) heraus. Muss ich noch etwas berücksichtigen oder geht das in Ordnung?

Liebe Grüße

Christoph

Bezug
                        
Bezug
Teilbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 So 09.06.2013
Autor: CJcom

Hallo Christoph,

> Hallo leduart,
>  
> ich schließe aus deiner Anmerkung, dass ich prüfen muss,
> ob es mehrere Tripel (a, b, 5) gibt.
>  Ok, die Formel lautet: [mm]\forall u,v\in\IN:u>v[/mm] gilt:
> [mm]a=u^2-v^2, b=2uv, c=u^2+v^2[/mm].
>  
> Sei [mm]c= 5=u^2+v^2\iff v^2=5-u^2\Rightarrow a=2u^2-5 \Rightarrow b=2\sqrt{5-v^2}*\sqrt{5-u^2}[/mm]
>  
> Also kommt folgendes Tripel heraus [mm](2u^2-5, 2\sqrt{5-v^2}*\sqrt{5-u^2}, 5)[/mm].
> Für u=2 und v=1 kommt (3, 4, 5) heraus. Muss ich noch
> etwas berücksichtigen oder geht das in Ordnung?
>  
> Liebe Grüße
>  
> Christoph

Wieso sollte c=5 sein? Wenn du deine 1. Gleichung anschaust:

12= [mm] q_1*ab [/mm]

wird diese z.B. durch a=1, b=2 und [mm] q_1=6 [/mm] erfüllt.

Schaut man nun die zweite an, hat man:

[mm] 60=q_2*abc [/mm] also
[mm] 60=q_2*2*c [/mm]

Dies wird z.B. auch durch [mm] q_2=10 [/mm] und c=3 erfüllt...


Bezug
                        
Bezug
Teilbarkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Fr 14.06.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Teilbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 So 09.06.2013
Autor: abakus


> Beweisen Sie, aus [mm]a^2+b^2=c^2[/mm] folgt 12|ab und 60|abc.
> Hallo Freunde der Mathematik,

>

> ich habe hier folgenden Ansatz und wollte wissen, ob dieser
> korrekt ist.

>

> [mm]12|ab \iff 12=q_1*ab[/mm] und
> [mm]60|abc \iff 60=q_2*abc[/mm]

>

> Diese Gleichungen unterscheiden sich um den Faktor 5.

>

> [mm]\Rightarrow c=5[/mm]
> [mm]\Rightarrow\forall k\in\IZ, \exists k: k(3^2+4^2)=k*5^2[/mm]

>

> [mm]\Rightarrow 12|ab\wedge 60|abc[/mm]

>
Nein. Es gilt auch [mm] $5^2+12^2=13^2$, [/mm] und 13 ist nicht gleich 5 und ist auch nicht durch 5 teilbar.

Worum es tatsächlich geht:
mindestens einer der Faktoren a, b ist durch 3 teilbar und mindestens einer der Faktoren a,b ist auch durch 4 teilbar.
Dazu kommt am Ende noch: Zeige, dass irgendeiner der Faktoren a, b, c durch 5 teilbar ist.
Tipp: betrachte die möglichen Reste von Quadratzahlen mod 3, mod 4 und mod 5.
Gruß Abakus

> Vielen Dank schon mal für eure Hilfe.

>

> Liebe Grüße

>

> Christoph

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]