matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieTeilbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Teilbarkeit
Teilbarkeit < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Teilbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Mi 13.04.2011
Autor: Physy

Aufgabe
Zeige [mm] n^2 [/mm] teilt [mm] \summe_{i=1}^{n}i^3 [/mm] für ein ungereades n


Hallo, ich sitze schon den ganzen Tag an dieser Aufgabe komme aber auf keine Lösung. Ich habe es auch schon mit Induktion versucht, komme aber trotzdem nicht weiter ... Hat jemand einen Tipp für mich?

        
Bezug
Teilbarkeit: elementary, my dear Watson
Status: (Antwort) fertig Status 
Datum: 18:04 Mi 13.04.2011
Autor: Al-Chwarizmi


> Zeige [mm]n^2[/mm] teilt [mm]\summe_{i=1}^{n}i^3[/mm]
>  Hallo, ich sitze schon den ganzen Tag an dieser Aufgabe
> komme aber auf keine Lösung. Ich habe es auch schon mit
> Induktion versucht, komme aber trotzdem nicht weiter ...
> Hat jemand einen Tipp für mich?


Hallo Physy,

das Problem ist wohl ganz einfach, dass die
Behauptung falsch ist ...

LG    Al-Chw.


Bezug
                
Bezug
Teilbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Mi 13.04.2011
Autor: Physy

Tut mir leid, ich habe eine Angabe vergessen und die Frage aktuallisiert.

Bezug
                        
Bezug
Teilbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Mi 13.04.2011
Autor: Al-Chwarizmi


> Tut mir leid, ich habe eine Angabe vergessen und die Frage
> aktuallisiert.


Aha, dann sieht es schon etwas anders aus. Unter dieser
Vorgabe kannst du es doch schon mit vollständiger Induktion
versuchen:

Sei [mm] S_n:=\summe_{i=1}^{i=n}i^3 [/mm] (mit ungeradem n). Dann musst du, um zur nächsten
zu betrachtenden Summe [mm] S_{n+2} [/mm] zu kommen, zwei Summanden
dazufügen:

     [mm] S_{n+2}=S_n+(n+1)^3+(n+2)^3 [/mm]

Nimm an (Induktionsvoraussetzung), dass [mm] S_n=t*n^2 [/mm] mit [mm] t\in\IN [/mm]
und versuche zu zeigen, dass dann [mm] S_{n+2} [/mm] ein ganzzahliges
Vielfaches von [mm] (n+2)^2 [/mm] sein muss !

Ein anderer (vielleicht einfacherer) Weg wäre der, für
die Summe [mm] S_n [/mm] (für alle [mm] n\in\IN) [/mm] eine viel weiter gehende
Formel zu entdecken und zu beweisen und dann daraus
die gewünschte Teilbarkeitsaussage herzuleiten.

LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]