matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenTaylorreihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - Taylorreihe
Taylorreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:25 Mo 15.06.2009
Autor: anna99

Aufgabe
Sei I ein offenes Intervall mit p [mm] \in [/mm] I. Die Reihe [mm] \summe_{n=0}^{\infty} a_{n}(x-p)^{n} [/mm] konvergiere
für alle x [mm] \in [/mm] I. Den Grenzwert bezeichnen wir mit f(x).
Zeigen Sie: Dann ist die Reihe [mm] \summe_{n=0}^{\infty} a_{n}(x-p)^{n} [/mm] die Taylorreihe für f um p.

Wie geht man bei dieser Aufgabe vor? Habe gar keine Idee und bitte um Hilfe!!!

        
Bezug
Taylorreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:05 Mo 15.06.2009
Autor: kuemmelsche

Hallo anna,

also ich weiß nicht wie ihr die Taylorpolynome definiert habt...

Gegeben soll doch sein:

[mm]\summe_{n=0}^{\infty} a_{n}(x-p)^{n} = \limes_{k\rightarrow\infty} \summe_{n=0}^{k} a_{n}(x-p)^{n} = f(x)[/mm].

Wenn diese Darstellung möglich ist, mit [mm] $a_n [/mm] = [mm] \bruch{f^{(n)}(p)}{n!}$ [/mm] dann heißt dieses Polynom doch Taylorpolynom.

Vllt sollst du noch zeigen, dass du dieses Polynom noch n-mal ableiten kannst, und damit dein [mm] $a_n$ [/mm] bestimmen oder so...

lg Kai

Bezug
        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:15 Mo 15.06.2009
Autor: fred97


> Sei I ein offenes Intervall mit p [mm]\in[/mm] I. Die Reihe
> [mm]\summe_{n=0}^{\infty} a_{n}(x-p)^{n}[/mm] konvergiere
>  für alle x [mm]\in[/mm] I. Den Grenzwert bezeichnen wir mit f(x).
>  Zeigen Sie: Dann ist die Reihe [mm]\summe_{n=0}^{\infty} a_{n}(x-p)^{n}[/mm]
> die Taylorreihe für f um p.
>  Wie geht man bei dieser Aufgabe vor? Habe gar keine Idee
> und bitte um Hilfe!!!


zeige: für jedes k [mm] \in \IN_0 [/mm] ist


               [mm] a_k [/mm] = [mm] \bruch{f^{(k)}(p)}{k!} [/mm]

Das kannst Du so machen:

             [mm]f(x)=\summe_{n=0}^{\infty} a_{n}(x-p)^{n}[/mm] für x [mm] \in [/mm] I


Du benötigst, dass man in obiger Reihe gliedweise differenzieren darf:

                [mm]f'(x)=\summe_{n=1}^{\infty}n a_{n}(x-p)^{n-1}[/mm] für x [mm] \in [/mm] I


FRED

Bezug
                
Bezug
Taylorreihe: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:44 Mo 15.06.2009
Autor: anna99

Also muss ich tatsächlich nur zeigen, dass man n-mal ableiteb kann?

Wie kann ich das denn zeigen?

Bezug
                        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Mo 15.06.2009
Autor: fred97


> Also muss ich tatsächlich nur zeigen, dass man n-mal
> ableiteb kann?

Nein , beliebig oft


>  
> Wie kann ich das denn zeigen?

Hab ich Dir doch oben gesagt: die Potenzreihe darfst Du gliedweise differenzieren

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]