matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationTaylorentwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differentiation" - Taylorentwicklung
Taylorentwicklung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:35 Mo 26.07.2010
Autor: melisa1

Aufgabe
Bestimmen Sie das Taylorpolynom der Ordnung 3 in [mm] x_0=\pi [/mm] der Funktion [mm] f:\IR\mapsto\IR:f(x)=x^3*\sin(x) [/mm]

Hallo,

würde mich freuen, wenn jemand mal drüber schauen könnte.

Da nichts über Restgliedabschätzung steht brauche ich nur die ersten drei Ableitungen. (Oder muss man dies trotzdem immer machen?)

[mm] f(\pi)=\pi^3sin(\pi) [/mm]

[mm] f'(x)=3x^2*sin(x)+x^3*cos(x) [/mm]

[mm] f'(\pi)=3\pi^2*sin(\pi)+\pi^3*cos(\pi) [/mm]

[mm] f''(x)=6x+sin(x)+3x^2*cos(x)+3x^2*cos(x)+x^3-sin(x) [/mm]

[mm] =6x+2(3x^2*cos(x)) [/mm]

[mm] f''(\pi)=6\pi+2(3\pi^2*cos(\pi)) [/mm]

[mm] f'''(x)=6+2(6x*cos(x)+3x^2*(-sin(x)) [/mm]



Ist das soweit in Ordnung?


Danke im voraus


Lg Melisa

        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Mo 26.07.2010
Autor: schachuzipus

Hallo Melisa,

> Bestimmen Sie das Taylorpolynom der Ordnung 3 in [mm]x_0=\pi[/mm]
> der Funktion f: [mm]\IR-> \IR f(x)0x^3*sinx[/mm]
>  Hallo,
>  
> würde mich freuen, wenn jemand mal drüber schauen
> könnte.
>  
> Da nichts über Restgliedabschätzung steht brauche ich nur
> die ersten drei Ableitungen. (Oder muss man dies trotzdem
> immer machen?)
>  
> [mm]f(\pi)=\pi^3sin(\pi)[/mm]

Ja, und das ist [mm] $=\ldots$ [/mm]

Setze doch hier und im weiteren mal die konkreten Werte für [mm] $\sin(\pi)$ [/mm] und [mm] $\cos(\pi)$ [/mm] ein ...

>  
> [mm]f'(x)=3x^2*sin(x)+x^3*cos(x)[/mm]
>  
> [mm]f'(\pi)=3\pi^2*sin(\pi)+\pi^3*cos(\pi)[/mm]
>  
> [mm]f''(x)=6x\red{+}sin(x)+3x^2*cos(x)+3x^2*cos(x)+x^3\blue{\cdot{}(}-sin(x)\blue{)}[/mm]

Das [mm] $\red{+}$ [/mm] ist ein [mm] $\red{\cdot{}}$ [/mm]

Und hinten ist auch ne Multiplikation!


>  
> [mm]=6x+2(3x^2*cos(x))[/mm] [kopfkratz3]

eher [mm] $(6x-x^3)\cdot{}\sin(x)+6x^2\cdot{}\cos(x)$ [/mm]

>  
> [mm]f''(\pi)=6\pi+2(3\pi^2*cos(\pi))[/mm] [notok]

Das ist nicht richtig, außerdem setze doch endlich mal ein: [mm] $\sin(\pi)=\ldots, \cos(\pi)=\ldots$ [/mm]

>  
> [mm]f'''(x)=6+2(6x*cos(x)+3x^2*(-sin(x))[/mm] [notok]



Und die 3.Ableitung musst du nochmal nachrechnen ...

>  
>
>
> Ist das soweit in Ordnung?
>  
>
> Danke im voraus
>  
>

Gruß

schachuzipus

> Lg Melisa


Bezug
                
Bezug
Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Mo 26.07.2010
Autor: melisa1

Hallo,

ich habe für [mm] sin(\pi) [/mm] den wert 0 und für [mm] cos(\pi) [/mm] den Wert -1.

d.h.:

> Hallo Melisa,
>  
> > Bestimmen Sie das Taylorpolynom der Ordnung 3 in [mm]x_0=\pi[/mm]
> > der Funktion f: [mm]\IR-> \IR f(x)0x^3*sinx[/mm]
>  >  Hallo,

  

> > [mm]f(\pi)=\pi^3sin(\pi)[/mm]
>  
> Ja, und das ist [mm]=\ldots[/mm]


das ist 0
  

> >  

> > [mm]f''(\pi)=6\pi+2(3\pi^2*cos(\pi))[/mm] [notok]
>  
> Das ist nicht richtig, außerdem setze doch endlich mal
> ein: [mm]\sin(\pi)=\ldots, \cos(\pi)=\ldots[/mm]
>  

[mm] f''(\pi)=6\pi*cos(\pi)=-6\pi [/mm]

ist das jz korrekt?


für die dritte Ableitung habe ich jetzt:

[mm] f'''(x)=((6-3x^2)sin(x))+((6x-x^3)*cos(x))+(12x*cos(x))+(6x^2*(-sin(x)) [/mm]

stimmt das diesmal?


Danke im voraus.


Lg Melisa

Bezug
                        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Mo 26.07.2010
Autor: fred97


> Hallo,
>  
> ich habe für [mm]sin(\pi)[/mm] den wert 0 und für [mm]cos(\pi)[/mm] den
> Wert -1.
>  
> d.h.:
>  > Hallo Melisa,

>  >  
> > > Bestimmen Sie das Taylorpolynom der Ordnung 3 in [mm]x_0=\pi[/mm]
> > > der Funktion f: [mm]\IR-> \IR f(x)0x^3*sinx[/mm]
>  >  >  Hallo,
>    
> > > [mm]f(\pi)=\pi^3sin(\pi)[/mm]
>  >  
> > Ja, und das ist [mm]=\ldots[/mm]
>  
>
> das ist 0
>    
>
> > >  

> > > [mm]f''(\pi)=6\pi+2(3\pi^2*cos(\pi))[/mm] [notok]
>  >  
> > Das ist nicht richtig, außerdem setze doch endlich mal
> > ein: [mm]\sin(\pi)=\ldots, \cos(\pi)=\ldots[/mm]
>  >  
>
> [mm]f''(\pi)=6\pi*cos(\pi)=-6\pi[/mm]
>  
> ist das jz korrekt?

Nein, es ist  [mm]f''(\pi)=6\pi^2*cos(\pi)=-6\pi^2[/mm]


>  
>
> für die dritte Ableitung habe ich jetzt:
>  
> [mm]f'''(x)=((6-3x^2)sin(x))+((6x-x^3)*cos(x))+(12x*cos(x))+(6x^2*(-sin(x))[/mm]
>  
> stimmt das diesmal?

Ja

FRED


>  
>
> Danke im voraus.
>  
>
> Lg Melisa


Bezug
                                
Bezug
Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Mo 26.07.2010
Autor: melisa1

Hallo nochmal,

für [mm] f'''(\pi) [/mm] habe ich jetzt

[mm] =-6\pi+\pi^3-12\pi=-18\pi+\pi^3 [/mm]

Hieraus ergibt sich:

[mm] T_{3}(x)=0-\pi^3(x-1)-\bruch{6\pi^2}{2!}(x-1)^2+\bruch{-18\pi+\pi^3}{3!}(x-1)^3 [/mm]

das stimmt oder?



Lg Melisa

Bezug
                                        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 Mo 26.07.2010
Autor: fred97


> Hallo nochmal,
>  
> für [mm]f'''(\pi)[/mm] habe ich jetzt
>  
> [mm]=-6\pi+\pi^3-12\pi=-18\pi+\pi^3[/mm]
>  
> Hieraus ergibt sich:
>  
> [mm]T_{3}(x)=0-\pi^3(x-1)-\bruch{6\pi^2}{2!}(x-1)^2+\bruch{-18\pi+\pi^3}{3!}(x-1)^3[/mm]
>  
> das stimmt oder?

Ja

FRED

>  
>
>
> Lg Melisa


Bezug
                                                
Bezug
Taylorentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Mo 26.07.2010
Autor: melisa1

danke für eure Hilfe!

Bezug
                                                
Bezug
Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:44 Mo 09.08.2010
Autor: Julia_stud

Ist dies nicht Falsch?

> >
> [mm]T_{3}(x)=0-\pi^3(x-1)-\bruch{6\pi^2}{2!}(x-1)^2+\bruch{-18\pi+\pi^3}{3!}(x-1)^3[/mm]
>  >  

Die Definition für das Taylorpolynom lautet:

[mm]T_{n}f(x;a):=\summe_{k=0}^{n}\bruch{f^{k}(a)}{k!}(x-a)^k[/mm]

Als Entwicklungspunkt [mm] x_0 [/mm] haben wir hier [mm] \pi, [/mm] also muss das Taylorpolynom lauten:

[mm]T_{3}(x)=0-\pi^3(x-\pi)-\bruch{6\pi^2}{2!}(x-\pi)^2+\bruch{-18\pi+\pi^3}{3!}(x-\pi)^3[/mm]

...stimmt das so?

Bezug
                                                        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Mo 09.08.2010
Autor: fred97


> Ist dies nicht Falsch?
>  
> > >
> >
> [mm]T_{3}(x)=0-\pi^3(x-1)-\bruch{6\pi^2}{2!}(x-1)^2+\bruch{-18\pi+\pi^3}{3!}(x-1)^3[/mm]
>  >  >  
>


Ja Du hast recht , die Entw. -stelle ist [mm] \pi [/mm]

> Die Definition für das Taylorpolynom lautet:
>  
> [mm]T_{n}f(x;a):=\summe_{k=0}^{n}\bruch{f^{k}(a)}{k!}(x-a)^k[/mm]
>  
> Als Entwicklungspunkt [mm]x_0[/mm] haben wir hier [mm]\pi,[/mm] also muss das
> Taylorpolynom lauten:
>  
> [mm]T_{3}(x)=0-\pi^3(x-\pi)-\bruch{6\pi^2}{2!}(x-\pi)^2+\bruch{-18\pi+\pi^3}{3!}(x-\pi)^3[/mm]
>  
> ...stimmt das so?

Jetzt stimmts

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]