matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationTaylorentwicklung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Taylorentwicklung
Taylorentwicklung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:08 Di 01.07.2008
Autor: Tanzmaus2511

Hallöchen,
habe folgende Aufgabe und wollte von euch nur mal bestätigt bekommen, ob das so richtig ist.

Sei [mm] f(x)=\wurzel[3]{x} [/mm]
Berechne das Taylorpolynom 2. Grades im Entwicklungspunkt 1.

Also erstmal die Ableitungen:
[mm] f'(x)=\bruch{1}{3} x^\bruch{-2}{3} [/mm]
[mm] f''(x)=\bruch{-2}{9} x^\bruch{-5}{3} [/mm]

[mm] T_1_,_2 [/mm] (x) = [mm] \bruch{1}{0!} f^{(0)} (x-1)^{(0)} [/mm] + [mm] \bruch{1}{1!} f^{(1)} (x-1)^{(1)} [/mm] + [mm] \bruch{1}{2!} f^{(2)} (x-1)^{(2)} [/mm]
[mm] =1+\bruch{1}{3}(x-1)^{(1)}- \bruch{1}{9}(x-1)^{(2)} [/mm]

Habe das eben auch mal von Derive rechnen lassen, aber da kam das nicht raus.
Vielleicht könnt ihr mir ja sagen, ob ich richtig liege.
Bin mir eigentlich ziemlich sicher.

Anschlussaufgabe ist noch folgende.
Ich doll sie Fehlerschranke für x [mm] \in (\bruch{9}{10},\bruch{11}{10}) [/mm] bestimmen.
Das mach ich ja mit dem Restglied von lagrange. Nur wie gehe ich denn jetzt mit meinen zwei Brüchen um? Habe das immer ohne solch eine Vorgabe bestimmt.

LG Tanzmaus.

        
Bezug
Taylorentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Di 01.07.2008
Autor: Al-Chwarizmi

Hallödeli Tanzmaus,

dein Ergebnis (Taylorpolynom 2.Ordnung) ist richtig !

> Anschlussaufgabe ist noch folgende.
> Ich doll die Fehlerschranke für x [mm]\in (\bruch{9}{10},\bruch{11}{10})[/mm]
> bestimmen.
> Das mach ich ja mit dem Restglied von lagrange. Nur wie
> gehe ich denn jetzt mit meinen zwei Brüchen um? Habe das
> immer ohne solch eine Vorgabe bestimmt.


[mm] \bruch{9}{10} [/mm] und  [mm] \bruch{11}{10} [/mm] sind einfach die Werte 1±0.1  links
und rechts von dem Entwicklungspunkt [mm] x_0=1. [/mm]
Das sieht doch ziemlich nach Standardaufgabe aus...


LG    al-Chwarizmi  



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]