matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Taylor / Restglied Lagrange
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis des R1" - Taylor / Restglied Lagrange
Taylor / Restglied Lagrange < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor / Restglied Lagrange: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Do 01.11.2012
Autor: helicopter

Aufgabe
Berechne die Taylorreihe der Funktion cos : [mm] \IR \rightarrow \IR [/mm] im Entwicklungspunkt [mm] \pi [/mm] und zeige mit der Lagrangeschen Form des Restgliedes, dass diese auf ganz [mm] \IR [/mm] gegen die Funktion konvergiert.



Hallo.
Ich habe die Taylorreihe für den Cosinus aufgestellt, hätte da

> [mm] \summe_{k=0}^{n}(-1)^k\bruch{cos^{(2k)}(\pi)}{2k!}(x-\pi)^{2k} [/mm] + > [mm] R_{2n+2}(x) [/mm]

EDIT:
Das war ja quatsch.

[mm] \summe_{k=0}^{n}(-1)^k\bruch{cos(\pi)}{2k!}(x-\pi)^{2k} [/mm] + [mm] R_{2n+2}(x) [/mm]
Da ja alle ungeraden Ableitungen +/- sin ergeben und der ist für [mm] \pi [/mm] = 0

Für das Restglied nach Lagrange habe ich
[mm] R_{2n+2}(x) [/mm] = [mm] (-1)^{n+1}\bruch{cos^(\xi)}{(2n+2)!}(x-\pi)^{2n+2} [/mm]

Ist es soweit OK?

Nun zu der eigentlichen Aufgabe, was muss ich noch zeigen? Das Restglied ist ja sogesehen das selbe, als hätte ich die Reihe bis n+1 fortgesetzt wenn ich [mm] \xi [/mm] = [mm] \pi [/mm] setze.

Soll ich mit Induktion über n zeigen, das dieses Restglied für alle
n so aussieht? Oder ist was anderes gemeint.

Gruß

        
Bezug
Taylor / Restglied Lagrange: Antwort
Status: (Antwort) fertig Status 
Datum: 09:07 Fr 02.11.2012
Autor: Helbig

Hallo helicopter,

Du sollst wohl [mm] $R_{2n+2} (x)\to [/mm] 0$ für [mm] $n\to\infty$ [/mm] zeigen.

Gruß,
Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]