matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische FunktionenTaylor Reihe
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Trigonometrische Funktionen" - Taylor Reihe
Taylor Reihe < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylor Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 Mi 11.01.2006
Autor: Magnia

Wieso funktioniert die TaylorReihe nicht bei der ermittlung von tanx ?

f(x)        = tanx                         =0      (x=0)
f`(x)     = [mm] 1+(tanx)^2 [/mm]               =1
f``(x)   = [mm] 2+2*(tanx)^2 [/mm]           =2
f```(x)  = [mm] 4+4(tanx)^2 [/mm]            =4

t(x)= [mm] x+x^2+2/3x^3+1/3x^4+2/15x^5 [/mm]

tan(0,5)=0,54
t(0,5)=0,8

Wieso funktioniert das hier nicht?
Danke

        
Bezug
Taylor Reihe: Ableitungen falsch bestimmt
Status: (Antwort) fertig Status 
Datum: 14:36 Mi 11.01.2006
Autor: Roadrunner

Hallo Magnia!


Du hast ab der 2. Ableitung einen Fehler in der Ableitungsberechnung. Du musst hier doch mit der MBKettenregel arbeiten:

$f'(x) \ = \ [mm] 1+\tan^2(x)$ [/mm]  [ok]

$f''(x) \ = \ [mm] 0+\underbrace{2*\tan^1(x)}_{\text{ äußere Abl.}} [/mm] \ * \ [mm] \underbrace{[1+\tan^2(x)]}_{\text{innere Abl.}} [/mm] \ = \ [mm] 2*\tan(x)+2*\tan^3(x)$ [/mm]


Und genauso bei den nächsten Ableitungen verfahren ...


Gruß vom
Roadrunner


Bezug
        
Bezug
Taylor Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:53 So 31.12.2006
Autor: black2407

wie würde die weitere Ableitung aussehen?
2*(tan^2x + 1) + 6(tan^2x * (tan^2x +1)

zusammengefasst:

8 [mm] (tan^2)x+6(tan^4)x [/mm] + 2


??

Bezug
                
Bezug
Taylor Reihe: Richtig!
Status: (Antwort) fertig Status 
Datum: 15:57 So 31.12.2006
Autor: Roadrunner

Hallo black!


[daumenhoch] Genau richtig!


Gruß vom
Roadrunner


Bezug
                
Bezug
Taylor Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 So 31.12.2006
Autor: black2407

die 4.ableitung wäre somit:

16*tanx + [mm] 24(tan^5)x [/mm] + [mm] 40(tan^3)x [/mm] ???

Bezug
                        
Bezug
Taylor Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 So 31.12.2006
Autor: nsche


> die 4.ableitung wäre somit:
>  
> 16*tanx + [mm]24(tan^5)x[/mm] + [mm]40(tan^3)x[/mm] ???

ja, das hab ich auch raus

vG
Norbert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]