Taylor < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:21 Sa 26.01.2008 | Autor: | haddi |
Hallo, versteh diese Formel zum Newton-Verfahren nicht!
Formel: [mm] xn+1=xn-\bruch{f(xn)}{f´xn)}
[/mm]
Was heißen die Variablen? Was muss ich dafür einsetzen?
Beispielaufgabe: [mm] 4x³-0,2e^{-2x}
[/mm]
Wie löse ich diese Aufgabe? Mit dem Newtonverfahren?
Gibts da vielleicht eine allgemeine Anleitung wie man da vorgehen muss?
Mit freundlichen Grüßen
Haddi
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:58 Sa 26.01.2008 | Autor: | bamm |
Hallo,
das Newton-Verfahren arbeitet iterativ (bzw. rekursiv): Du setzt das Ergebnis deiner Rechnung immer wieder ein. Mit dem Newton-Verfahren (welches du ja dort teilweise aufgeschrieben hast) kann man z.B. nichtlineare Gleichungen annähern. Am Anfang der Rechnung sollte man ein geeignetes [mm] x_n [/mm] (also [mm] x_0) [/mm] wählen damit man nicht allzuviel rechnen muss. Da schaut man einfach mal die Funktion an und überlegt sich wo diese 0 werden könnte (also wenn man eine Gleichung f(x)=0 annähern möchte). Im Zweifelsfall einfach mal zwei, drei Zahlen mit dem Taschenrechner einsetzen. Aber im Prinzip kann man jede Zahl einsetzen, solange f(x) und f'(x) für diese Zahl definiert und f'(x) ungleich 0 ist (im Zweifelsfall x=0 probieren). Die Zahl, dessen Ergebnis dann am nähesten bei 0 liegt, dann für [mm] x_n [/mm] in deine Formel einsetzen. Jetzt musst du schauen ob [mm]\left|x_{n+1} - x_n\right| \le \varphi[/mm] erfüllt ist.
[mm]x_{n+1}[/mm] ist dein Ergebnis, [mm] x_n [/mm] dein eingesetzter Wert. [mm]\varphi[/mm] ist dabei deine sog. Abbruchbedingung, d.h. wie groß der Unterschied höchstens sein darf damit die Näherung genau genug ist. Diese Abbruchbedingung wird meistens in der Aufgabe festgelegt. Wenn diese Ungleichung erfüllt ist, dann bist du fertig und x_(n+1) ist dein Ergebnis. Wenn nicht, setzt du [mm]x_n = x_{n+1}[/mm] und setzt [mm] x_n [/mm] wieder in die Formel oben ein und rechnest es wieder aus. Und dann muss man eben so lange rechnen bis die Abbruchbedingung erfüllt ist.
Gruß
|
|
|
|