matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungTangentenproblem
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Tangentenproblem
Tangentenproblem < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangentenproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:52 Mi 12.09.2007
Autor: itse

Aufgabe
Wo berührt eine Parallele zur Geraden y=x die Parabel y=0,5x²?

Hallo Zusammen,

in der Lösung steht x=1, aber wie rechne ich das? Hab leider keinen Ansatz. Vielen Dank.

        
Bezug
Tangentenproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:05 Mi 12.09.2007
Autor: M.Rex

Hallo.

Am einfahchsten geht es, wenn du die Parallele Gerade mal mit y=x+n bezeichnest. Dann suchst du die Schnittpunkte zwischen dieser sogenannten Geradenschar un der Parabel.

Also:

x+n=0,5x²
[mm] \gdw [/mm] x-2x-2n=0
[mm] \gdw x_{1;2}=1\pm\wurzel{1+2n} [/mm]

Jetzt soll die Gerade die Parabel nur berühren, also suchst du das n, für das nur eine Schnittstelle existiert. Das passiert, wenn der Term unter der Wurzel Null wird.

Also:1+2n=0
[mm] \gdw n=-\bruch{1}{2} [/mm]

Also ist die gesuchte Gerade: [mm] y=x-\bruch{1}{2} [/mm]

Und die x-Koordinate ist 1, wie dur aud der P-Q-Formel ablesen kannst:

[mm] \gdw x_{1;2}=1\pm\wurzel{1+2n} [/mm]
[mm] \gdw x_{1;2}=1\pm0=1 [/mm]

Also ist der Schnittpunkt S(1/0,5)

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]