matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenTangenten/Normale an Schar
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Tangenten/Normale an Schar
Tangenten/Normale an Schar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangenten/Normale an Schar: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:08 Mi 07.03.2007
Autor: Cr4izy

Aufgabe
An den Graphen der Funktionschar f(x)=(1/k)*x-x*ln(x) wird im Punkt (1|f(1)) eine Tangente und Normale gelegt. Geben Sie die Gleichung der Tangente und der Normale an.

Ich habe Probleme die Gleichung der Normale zu bilden.

Zunächst habe ich den Punkt in Abhängigkeit von k bestimmt und erhielt P(1|1/k).

Die erste Ableitung lautet f'(x)=(1/k)-1-ln(x).
Damit ist die Steigung in P, ich nenne sie mal m1, m1=(1/k)-1.

Damit ergibt sich für die Tangetengleichung (P wurde in die Formel t(x)=m1*x+b eingesetzt und b bestimmt):

t(x)=((1/k)-1)*x+1

Nun weiß ich, dass die Normale senkrecht auf die Tangente steht, bzw. m1*m2=-1

Damit ergibt sich für m2=-1/((1/k)-1) bzw. m2=-((1/k)-1)^-1.

Wenn ich das dann in o(x)=m2*x+b und b berechne, dann erhalte ich die Gleichung:
o(x)=-((1/k)-1)^-1)*x+(1/k)+((1/k)-1)^-1

Aber irgendwie stimmt das nicht... Und ich weiß nicht, wo mein Fehler steckt... Ich habe das nämlich gezeichnet mit dem Programm TurboPlot, aber die Othogonale, die ich bestimmt habe, die schneidet die Tangente nicht im rechten Winkel... Was habe ich falsch gemacht?


_________________________________


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangenten/Normale an Schar: Steigung umstellen
Status: (Antwort) fertig Status 
Datum: 21:25 Mi 07.03.2007
Autor: Loddar

Hallo Cr4izy!


Ich kann jetzt irgendwie keinen konkretn Fehler erkennen. aber zur Vereinfachung solltest Du Dir die beiden Steigungen mal umformen:

[mm] $m_1 [/mm] \ = \ [mm] \bruch{1}{k}-1 [/mm] \ = \ [mm] \bruch{1-k}{k}$ [/mm]

[mm] $m_2 [/mm] \ = \ [mm] -\bruch{1}{m_1} [/mm] \ = \ [mm] -\bruch{1}{\bruch{1-k}{k}} [/mm] \ = \ [mm] -\bruch{k}{1-k} [/mm] \ = \ [mm] \bruch{k}{k-1}$ [/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]