matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungTangente und Normale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differenzialrechnung" - Tangente und Normale
Tangente und Normale < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente und Normale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Mo 31.03.2008
Autor: dummy91

Aufgabe
gegeben ist der graph der funktion f mit f(x)= 3/x und für jedes [mm] m\in \IR [/mm] eine gerade gm:y=mx+3
bestimmen sie die gleichung der geraden gm,die mit dem graphen von f genau einen gemeinsamen schnitpunkt P0 hat

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

also ich weiß zwar, dass diese frage leicht ist, aber komme irgendwie trozdem nich weiter...

gegeben ist der graph der funktion f mit f(x)= 3/x und für jedes [mm] m\in \IR [/mm] eine gerade gm:y=mx+3
bestimmen sie die gleichung der geraden gm,die mit dem graphen von f genau einen gemeinsamen schnitpunkt P0 hat...

die aufgabe geht noch weiter, aber den rest kann ich..
das problem liegt bei der berechnung von m
DANKE!

        
Bezug
Tangente und Normale: 2 Gleichungen
Status: (Antwort) fertig Status 
Datum: 19:49 Mo 31.03.2008
Autor: Loddar

Hallo dummy!


Schau Dir mal den Graphen von $f(x) \ = \ [mm] \bruch{3}{x}$ [/mm] an. Eine Gerade kann mit dieser Kurve nur dann genau einen Schnittpunkt haben, wenn es sich hierbei um einen Berührpunkt handelt.

Von daher muss für den x-Wert des Berührpunktes gelten, dass sowohl der Funktionswert als auch der Steigungswert (= 1.  Ableitung) identisch sind. Damit ergeben sich folgende zwei Bestimmungsgleichungen für 2 Unbekannte:

$$f(x) \ = \ g(x)$$
$$f'(x) \ = \ g'(x)$$

Gruß
Loddar


Bezug
                
Bezug
Tangente und Normale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Mo 31.03.2008
Autor: dummy91

danke, aber meinen sie mit der ableitung jetzt
f'(x)= [mm] -3/x^2 [/mm]
und g'(x)=m

und das dann gleichsezten?
oder habe ich es falsch verstanden( was nicht sehr unwahrscheinlich ist)

Bezug
                        
Bezug
Tangente und Normale: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Mo 31.03.2008
Autor: XPatrickX

Hey, du hast es richtig verstanden. Die beiden Ableitungen gleichsetzen und die beiden Funktionen selber.  Dann hast du ein Gleichungssystem mit zwei Gleichungen und den 2 Unbekannten x und m. Dieses kannst du dann lösen. Gruß Patrick

Bezug
                                
Bezug
Tangente und Normale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mo 31.03.2008
Autor: dummy91

vielen dank!
jetzt habe ich es =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]