matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesTangente an f'
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Sonstiges" - Tangente an f'
Tangente an f' < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente an f': Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 So 19.08.2007
Autor: Daniel_Basiry

Aufgabe
Vom Punkt P(4/-12) aus werden Tangenten an den Graphen von f: f(x)=1/x gelegt. Ermittle die Berührpunkte mit dem Graphen von f'.

Da ich leider letztes Jahr nicht so reecht aufgepasst habe, weiß ich jetzt nicht so richtig wie ich diese Aufgabe rechnen soll. :(  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Tangente an f': Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 So 19.08.2007
Autor: M.Rex

Hallo.

Da du eine Tangente suchst, suchst du ja eine Gerade der Form t(x)=mx+b, wobei du das m und das b bestimmen sollst.

Was weiss ich jetzt über die Tangente?

1) P(4/-12) soll auf der Geraden liegen, also soll gelten:
t(4)=-12

Also: -12=m*4+b [mm] \gdw [/mm] b=-12-4m

2) Am Berührpunkt [mm] B(x_{b}/f(x_{b})) [/mm] (leider unbekannt), hat die Tangente die gleiche Steigung wie der Graph der Funktion f. Dessen Steigung kannst du ja mit Hilfe der Ableitung bestimmen, es gilt also [mm] m=f'(x_{b}). [/mm]

Somit gilt für die Tangente:

[mm] t(x)=f'(x_{b})*x+\underbrace{(-12-4m)}_{b}=f'(x_{b})*x+(-12-4f'(x_{b})) [/mm]

Jetzt bleibt noch, den Berührpunkt, und damit der konkrete Wert für [mm] f'(x_{b}) [/mm] zu bestimmen. Hier soll ja gelten:

t(x)=f(x), also

[mm] \bruch{1}{x}=\underbrace{-\bruch{1}{x²}}_{f'(x)}*x+(-12+\bruch{4}{x²}) [/mm]

Daraus berechnest du jetzt dein [mm] x_{b} [/mm] des Berührpunktes, und dann [mm] f(x_{b}) [/mm] und [mm] f'(x_{b}). [/mm] Mit dem Ergebnis von [mm] f'(x_{b}) [/mm] bestimmst du dann dein m und b der gesuchten Tangente.

Marius

Bezug
                
Bezug
Tangente an f': Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 So 19.08.2007
Autor: Daniel_Basiry

Vielen dank für die schnelle und ausführliche erklärung.^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]