matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenTangente an Graphen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Tangente an Graphen
Tangente an Graphen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente an Graphen: Idee
Status: (Frage) beantwortet Status 
Datum: 16:41 Mi 07.05.2014
Autor: Kruemel1008

Aufgabe
Sei h(x):= [mm] \bruch{3x}{3-x^{2}}. [/mm] Bestimmen Sie den maximalen Definitionsbereich von h in [mm] \IR [/mm] und die Tangenten an den Graphen von h, die die Steigung 1 haben. Zeichnen Sie den Graphen von h und die gefundenen Tangenten in ein Koordinatensystem und markieren Sie die x- und y- Werte der Punkte, in denen die Tangenten den Graphen von h berühren.

Der Definitionsbereich ist ja einfach:
[mm] D(h)=\IR\{-\wurzel{3}, \wurzel{3} } [/mm]

Aber wie ich auf die Tangenten komme, dazu fehlt mir jeglicher Ansatz. Hat einer einen Tipp für mich?

LG

        
Bezug
Tangente an Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Mi 07.05.2014
Autor: Diophant

Hallo,

> Sei h(x):= [mm]\bruch{3x}{3-x^{2}}.[/mm] Bestimmen Sie den maximalen
> Definitionsbereich von h in [mm]\IR[/mm] und die Tangenten an den
> Graphen von h, die die Steigung 1 haben. Zeichnen Sie den
> Graphen von h und die gefundenen Tangenten in ein
> Koordinatensystem und markieren Sie die x- und y- Werte der
> Punkte, in denen die Tangenten den Graphen von h
> berühren.
> Der Definitionsbereich ist ja einfach:
> [mm]D(h)=\IR\{-\wurzel{3}, \wurzel{3} }[/mm]

Vermutlich ist das richtig gemeint, aber ein Notationsfehler. Du meinst das so:

[mm] D_h=\IR\setminus\{-\wurzel{3};\wurzel{3}\} [/mm]

> Aber wie ich auf die Tangenten komme, dazu fehlt mir
> jeglicher Ansatz. Hat einer einen Tipp für mich?

Bilde die erste Ableitung und setze sie gleich 1. Das ergibt eine Bestimmungsgleichung für die gesuchten x-Werte.

Gruß, Diophant

Bezug
                
Bezug
Tangente an Graphen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:51 Do 08.05.2014
Autor: Kruemel1008

Ahhh, stimmt, danke, dann ists ja einfach :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]