Surjektiv, Injektiv < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hallo,
ich habe hier eine Aufgabe, bei der ich nicht weiterkomme:
Sei X eine nicht leere Menge und sei f: X [mm] \to [/mm] Y eine Funktion. Zeigen sie:
Es gibt eine Menge U, eine injektive Funktion [mm] g_{1}: [/mm] X [mm] \to [/mm] U und eine surjektive Funktion [mm] g_{2}: [/mm] U [mm] \to [/mm] Y mit f = [mm] g_{2} \circ g_{1}
[/mm]
Mein Ansatz sieht folgendermaßen aus:
zu zeigen ist ja einmal, dass [mm] g_{2} \circ g_{1} [/mm] = f
Dazu sei y [mm] \in [/mm] Y beliebig. [mm] \exists [/mm] u [mm] \in [/mm] U, sodass [mm] g_{2} [/mm] (u) = y und [mm] \forall x_{1}, x_{2} \in [/mm] X gilt [mm] g_{1} (x_{1}) [/mm] = g1 [mm] (x_{2}) [/mm] genau dann, wenn [mm] x_{1}=x_{2}.
[/mm]
Sei P [mm] \subset [/mm] U die Menge aller Alemente aus U, die durch [mm] g_{1} [/mm] abgebildet werden.
[mm] \Rightarrow \forall [/mm] u [mm] \in [/mm] P [mm] \exists [/mm] x [mm] \in [/mm] X, sodass [mm] g_{1}(x)=u [/mm] und für jedes beliebige u* [mm] \in [/mm] U [mm] g_{2}(u*) [/mm] = y
Fall 1: u* [mm] \in [/mm] P
[mm] \Rightarrow g_{2} [/mm] (u*) = y und [mm] g_{1}(x)=u*
[/mm]
[mm] \Rightarrow g_{2}(g_{1}(x)) [/mm] = f
Fall2: u* [mm] \not\in [/mm] P.
Dann sind [mm] g_{1}: [/mm] X [mm] \to [/mm] U, x [mm] \mapsto [/mm] u* und [mm] g_{2}: [/mm] U [mm] \to [/mm] Y, u [mm] \mapsto [/mm] y nicht verknüpfbar
Dann wäre ja noch zu zeigen, dass unter der Vorraussetzung, dass f = [mm] g_{1} \circ g_{2} [/mm] gilt, dass [mm] g_{1} [/mm] injektiv und [mm] g_{2} [/mm] surjektiv sind. Hier weiß ich aber nicht wie ich anfangen soll.
Über eventuellen Verbesserungen von meinem Anfang des Beweises und Tips zum Rest würde ich mich sehr freuen
mfg
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:32 Fr 12.11.2010 | Autor: | Sax |
Hi,
> Hallo,
> ich habe hier eine Aufgabe, bei der ich nicht weiterkomme:
> Sei X eine nicht leere Menge und sei f: X [mm]\to[/mm] Y eine
> Funktion. Zeigen sie:
> Es gibt eine Menge U, eine injektive Funktion [mm]g_{1}:[/mm] X [mm]\to[/mm]
> U und eine surjektive Funktion [mm]g_{2}:[/mm] U [mm]\to[/mm] Y mit f = [mm]g_{1} \circ g_{2}[/mm]
>
> Mein Ansatz sieht folgendermaßen aus:
> zu zeigen ist ja einmal, dass [mm]g_{2} \circ g_{1}[/mm] = f
> Dazu sei y [mm]\in[/mm] Y beliebig. [mm]\exists[/mm] u [mm]\in[/mm] U, sodass [mm]g_{2}[/mm]
> (u) = y und [mm]\forall x_{1}, x_{2} \in[/mm] X gilt [mm]g_{1} (x_{1})[/mm] =
> g1 [mm](x_{2})[/mm] genau dann, wenn [mm]x_{1}=x_{2}.[/mm]
> Sei P [mm]\subset[/mm] U die Menge aller Alemente aus U, die durch
> [mm]g_{1}[/mm] abgebildet werden.
> [mm]\Rightarrow \forall[/mm] u [mm]\in[/mm] P [mm]\exists[/mm] x [mm]\in[/mm] X, sodass
> [mm]g_{1}(x)=u[/mm] und für jedes beliebige u* [mm]\in[/mm] U [mm]g_{2}(u*)[/mm] = y
> Fall 1: u* [mm]\in[/mm] P
> [mm]\Rightarrow g_{2}[/mm] (u*) = y und [mm]g_{1}(x)=u*[/mm]
> [mm]\Rightarrow g_{2}(g_{1}(x))[/mm] = f
>
> Fall2: u* [mm]\not\in[/mm] P.
> Dann sind [mm]g_{1}:[/mm] X [mm]\to[/mm] U, x [mm]\mapsto[/mm] u* und [mm]g_{2}:[/mm] U [mm]\to[/mm] Y,
> u [mm]\mapsto[/mm] y nicht verknüpfbar
>
> Dann wäre ja noch zu zeigen, dass unter der
> Vorraussetzung, dass f = [mm]g_{1} \circ g_{2}[/mm] gilt, dass [mm]g_{1}[/mm]
> injektiv und [mm]g_{2}[/mm] surjektiv sind. Hier weiß ich aber
> nicht wie ich anfangen soll.
>
> Über eventuellen Verbesserungen von meinem Anfang des
> Beweises und Tips zum Rest würde ich mich sehr freuen
>
> mfg
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
An den vier markierten Stellen ist zweimal f = [mm] g_1 \circ g_2 [/mm] und zweimal f = [mm] g_2 \circ g_1. [/mm] Mache doch mal deutlich, was hier gelten soll und welche der beiden g-Funktionen injektiv und welche surjektiv werden soll.
Beachte : [mm] (g_1 \circ g_2)(x) [/mm] = [mm] g_1(g_2(x)) [/mm]
Gruß Sax.
|
|
|
|
|
> Hallo,
> ich habe hier eine Aufgabe, bei der ich nicht weiterkomme:
> Sei X eine nicht leere Menge und sei f: X [mm]\to[/mm] Y eine
> Funktion. Zeigen sie:
> Es gibt eine Menge U, eine injektive Funktion [mm]g_{1}:[/mm] X [mm]\to[/mm]
> U und eine surjektive Funktion [mm]g_{2}:[/mm] U [mm]\to[/mm] Y mit f = [mm]g_{1} \circ g_{2}[/mm]
>
Hallo,
.
Zunächst einmal habe ich den begründeten Verdacht, daß Deine Aufgabenstellung nicht stimmt. Ich glaube, Du hast dort einiges verdreht, auch Sax weist ja darauf hin.
Könnte es sein, daß der Aufgabentext so war:
Sei X eine nicht leere Menge und sei f: X [mm] $\to$ [/mm] Y eine Funktion.
Zeigen sie:
Es gibt eine Menge U,
eine [mm] \red{surjektive} [/mm] Funktion [mm] $g_{1}:$ [/mm] X [mm] $\to$U [/mm]
und eine [mm] \red{injektive} [/mm] Funktion [mm] $g_{2}:$ [/mm] U [mm] $\to$ [/mm] Y
mit f = [mm] $g_{2} \circ g_{1}$.
[/mm]
So sieht es etwas stimmiger aus.
> Mein Ansatz sieht folgendermaßen aus:
> zu zeigen ist ja einmal, dass [mm]g_{2} \circ g_{1}[/mm] = f
Nun, das ist eigentlich erst das Dritte, was hier zu tun ist.
Wie willst Du damit beginnen zu zeigen, daß [mm] $g_{2} \circ g_{1}$ [/mm] = f, so lange wie überhaupt nicht wissen, was für Funktionen [mm] g_1 [/mm] und [mm] g_2 [/mm] sein sollen.
> Dazu sei y [mm]\in[/mm] Y beliebig. [mm]\exists[/mm] u [mm]\in[/mm] U,
Hier ist die erste Ungereimtheit: ob solch ein [mm] u\in [/mm] U wirklich existiert, kann man doch nur entscheiden, wenn man U kennt.
Falls Du U kennst, verätst Du es dem Leser nicht.
Merke: wenn bei Beweisen zu zeigen ist, daß irgendwas existiert, muß man es vorzeigen. Danach rechnet man vor, daß es die geforderten Eigenschaften hat.
Hier: Du mußt eine Menge U definieren, eine surjektive Abbildung [mm] g_1 [/mm] und eine injektive [mm] g_2.
[/mm]
Und wenn Du das getan hast, rechnest Du vor, daß alles gut klappt, daß [mm] f=g_2\circ g_1 [/mm] ist.
> Dann wäre ja noch zu zeigen, dass unter der
> Vorraussetzung, dass f = [mm]g_{1} \circ g_{2}[/mm] gilt, dass [mm]g_{1}[/mm]
> injektiv und [mm]g_{2}[/mm] surjektiv sind. Hier weiß ich aber
> nicht wie ich anfangen soll.
Nein, das ist nicht zu zeigen.
Wie gesagt: konstruiere ein surjektives [mm] g_1 [/mm] und ein injektives [mm] g_2 [/mm] und zeige dann, daß die von Dir konstruerten Funktionen verknüft die Funktion f ergeben.
Tip für U: Mit dem Bild von f klappt's.
Gruß v. Angela
|
|
|
|
|
Hallo, tut mir leid, dass ich da was verdreht habe.
Also hier nochmal die genaue Aufgabenstellung:
Sei X eine nicht leere Menge und sei f: X [mm] \to [/mm] Y eine Funktion. Zeigen sie:
Es gibt eine Menge U, eine injektive Funktion [mm] g_{1} [/mm] : X [mm] \to [/mm] U und eine surjektive Funktion [mm] g_{2} [/mm] : U [mm] \to [/mm] Y mit f = [mm] g_{2} \circ g_{1}
[/mm]
Wie ich über das Bild von f auf U kommen kann ist mir aber nicht richtig klar.
|
|
|
|
|
Ich verstehe leider nicht, wie ich U mit Hilfe des Bildes von f konstruieren soll.
Könnte mir da jemand noch weiterhelfen?
danke im vorraus
mfg
|
|
|
|
|
Hallo,
da Deine Aufgabenstellung anders ist als die von mir geratene, ist es ja überhaupt fraglich, ob der Tip paßt, oder?
Gruß v. Angela
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:59 Sa 13.11.2010 | Autor: | Sax |
Hi,
die Vorgehensweise, die Abgela in ihrer Antwort beschrieben hat, bleibt natürlich weiterhin gültig (injektiv und surjektiv vertauscht).
Neuer Tipp für U : nicht das Bild von f nehmen, sondern es mal mit U = X [mm] \cup [/mm] Y versuchen.
Gruß Sax.
|
|
|
|
|
Danke für die Antwort.
Ich habe das jetzt mal versucht:
Sei U [mm] \subset [/mm] X [mm] \vee [/mm] U [mm] \subset [/mm] Y. Dann gilt für jedes u [mm] \in [/mm] U auch u [mm] \in [/mm] X [mm] \cup [/mm] Y.
Sei y [mm] \in [/mm] Y beliebig. Dann gilt [mm] g_{2} [/mm] (u) = y und [mm] \forall [/mm] x, x* [mm] \in [/mm] X [mm] g_{1} [/mm] (x) = [mm] g_{1} [/mm] (x*) genau dann, wenn x = x*.
Sei P [mm] \subset [/mm] U die Menge aller Elemente von U, die durch [mm] g_{1} [/mm] abgebildet werden.
[mm] \Rightarrow \forall [/mm] u [mm] \in [/mm] P [mm] \exists [/mm] x [mm] \in [/mm] X, sodass [mm] g_{1} [/mm] (x) = u und für jedes beliebige y [mm] \in [/mm] Y gilt mit u* [mm] \in [/mm] U [mm] g_{2} [/mm] (u*) = y.
Fall 1: u* [mm] \in [/mm] P
[mm] \rightarrow g_{2} [/mm] (u*) = y und [mm] g_{1} [/mm] (x) = u*
[mm] \rightarrow g_{2}( g_{1} [/mm] ( x)) = [mm] g_{2} \circ f_{1} [/mm] = f
Fall1: u* [mm] \not\in [/mm] P
[mm] \rightarrow g_{1}: [/mm] X [mm] \to [/mm] U, x [mm] \mapsto [/mm] u* und [mm] g_{2}: [/mm] U [mm] \to [/mm] Y, u [mm] \mapsto [/mm] y sind nicht verknüpfbar
So habe ich das mal probiert. Das heißt die Menge U die gesucht ist, muss diejenige Menge sein, die von [mm] g_{1} [/mm] auf der Vereinigung von X und Y abgebildet wird. Meine Frage wäre jetzt, ob das so stimmt. Irgendwie habe ich das Gefühl, dass das kein zulässiger Beweis sein kann...
Ich bitte nochmals um Hilfe
mfg
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:09 Sa 13.11.2010 | Autor: | Sax |
Hi
Hi,
> Danke für die Antwort.
> Ich habe das jetzt mal versucht:
> Sei U [mm]\subset[/mm] X [mm]\vee[/mm] U [mm]\subset[/mm] Y. Dann gilt für jedes u
> [mm]\in[/mm] U auch u [mm]\in[/mm] X [mm]\cup[/mm] Y.
> Sei y [mm]\in[/mm] Y beliebig. Dann gilt [mm]g_{2}[/mm] (u) = y und [mm]\forall[/mm]
> x, x* [mm]\in[/mm] X [mm]g_{1}[/mm] (x) = [mm]g_{1}[/mm] (x*) genau dann, wenn x =
> x*.
Du zäumst das Pferd schon wieder vom Schwanz her auf.
> Sei U [mm]\subset[/mm] X [mm]\vee[/mm] U [mm]\subset[/mm] Y
Da gibt es vielleicht sehr viele Mengen U, die diese Bedingung erfüllen, vielleicht auch nur die leere Menge. Du musst ganz konkret eine Menge U angeben.
Im Aufgabentext heißt es doch ganz explizit "Zeigen sie: Es gibt eine Menge U".
> Sei y [mm]\in[/mm] Y beliebig. Dann gilt [mm]g_{2}[/mm] (u) = y und [mm]\forall[/mm]
> x, x* [mm]\in[/mm] X [mm]g_{1}[/mm] (x) = [mm]g_{1}[/mm] (x*) genau dann, wenn x =
> x*.
Hier genauso. Angela hat die doch geschrieben, wie du vorgehen musst : konkret zwei Funktionen [mm] g_1 [/mm] und [mm] g_2 [/mm] angeben und dann nachweisen, dass sie alle Bedingungen der Aufgabe erfüllen. Solange man nicht weiß, was [mm] g_2 [/mm] ist, kann doch niemand nachprüfen, ob wirklich gilt, dass [mm] g_2(u)=y [/mm] ist.
Deine Ausführungen können vielleicht für dich selbst als Vorüberlegungen gut sein ("Woll'n ma seh'n, also hier ist Y, da nehm' ich ein y raus, aha, dann muss hier ein u, mmm...äh..also...das u hier muss mit [mm] g_2 [/mm] .. also damit [mm] g_2 [/mm] surjektiv wird.. also hm..hm.. y darf nicht leer ausgehen..aha, aha, also wenn ich das so mache, und wenn ich mir das [mm] g_2 [/mm] so wähle, dann klappt das ja schon mal so weit."), aber was du dann in die Lösung schreibst muss ganz konkret sein : "Ich wähle [mm] g_2 [/mm] = [mm] e^u [/mm] und beweise, dass damit alle Forderungen der Aufgabe erfüllt sind !" [mm] (e^u [/mm] wählst du natürlich nicht, dass war nur ein Beispiel)
Nochmal mein Tipp von vorhin : Wähle U = X [mm] \cup [/mm] Y = X [mm] \cup [/mm] (Y \ X).
Mache dir eine Skizze: X links, U in der Mitte, Y rechts, [mm] g_1 [/mm] von X nach U, [mm] g_2 [/mm] von U nach Y.
Gruß Sax.
|
|
|
|