matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisSurjektin,injektin bijektion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Surjektin,injektin bijektion
Surjektin,injektin bijektion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Surjektin,injektin bijektion: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 08:02 Mo 05.12.2005
Autor: chilavert

Man prüfe, welche der Abbildungen fg : R × R --> R × R injektiv bzw. surjektiv bzw. bijektiv sind:

f2 mit f2(x, y) = (xy, x + y)

und

f3 mit f3(x, y) = (x + 2, y + 6)

also die definitionen lese ich mir durch und verstehe dies eigentlich aber ich kann es einfach nicht anwenden. kann mir wohl jemand sagen wie ich das löse,zeigen und beweisen kann?wäre super nett und dringend

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Surjektin,injektin bijektion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:04 Mo 05.12.2005
Autor: angela.h.b.

Hallo,

bitte keine Doppelpostings!

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]