matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisSupremum, Menge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Supremum, Menge
Supremum, Menge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Supremum, Menge: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:46 So 31.10.2004
Autor: SabineG

Hab hier ne Aufgabe, die ich morgen abgeben muss, komm aber überhaupt nicht voran, dass heisst mir fehlt jegliche Idee.
Also:
Seien I [mm] \not= \emptyset [/mm] eine beliebige Menge und [mm] A_{i}\subset \IR [/mm] nach oben beschränkt und nicht leer. Ferner sei auch A:= [mm] \cup_{i \inA_{i}} [/mm] nach oben beschränkt.
Zeigen Sie, dass dann:

supA = sup [mm] (\cup A_{i}) [/mm] = [mm] sup{supA_{i}; i \in I} [/mm]

(unter dem Vereinigungszeichen steht noch: i [mm] \in [/mm] I

es wär wirklich toll, wenn mir jemand zeigen könnte wie das geht.

        
Bezug
Supremum, Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 So 31.10.2004
Autor: Hanno

Hallo Sabine!

Ich nehme an, du möchtest zeigen, dass:
[mm] $sup\left( \bigcup_{i\in I}^{A_i}\right) =sup(\{sup(A_i)| i\in I\})$ [/mm] gilt.

So, und nun mein Tip:
Versuche doch, die Behauptung indirekt zu beweisen. Du nimmst also an, dass [mm] $=sup(\{sup(A_i)| i\in I\})$ [/mm] nicht das Supremum von A ist. Was folgt daraus, wenn du betrachtest, was A eigentlich ist? Wo liegt der Widerspruch?
Versuch's mal - und überleg' ggf. auch mal 10 Minuten, wenn es dir nicht sofort klar wird. Selber denken macht schlau - wenn ich dir eine Lösung gebe, hast du da nicht viel von.

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]